Lpt protein-mediated transport of LPS
Lpt 蛋白介导的 LPS 转运
基本信息
- 批准号:10205081
- 负责人:
- 金额:$ 35.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAffectAffinityAmino AcidsAntibioticsBacteriaBacterial PhysiologyBindingBinding SitesBiological AssayBiophysicsC-terminalCalorimetryCarrier ProteinsCell surfaceCellsCessation of lifeComplexComputational TechniqueCrystallizationDataDevelopmentDimerizationDiseaseDrug DesignElectron Spin Resonance SpectroscopyEndotoxinsEnvironmentEscherichia coliEventExcisionFoundationsFutureGoalsGram-Negative BacteriaGrowthHumanHydrophobicityInfectionInflammatoryLeadLigandsLipidsLipopolysaccharidesMediatingMembraneMembrane ProteinsMicrobiologyModelingModificationMolecular ConformationMutationN-terminalNamesPeriplasmic ProteinsProtein AnalysisProteinsPseudomonas aeruginosaResearchRoleSalmonella typhimuriumSeptic ShockSideSpectrum AnalysisStructureSurface Plasmon ResonanceSystemTechniquesTestingTitrationsTransport ProcessWorkbiophysical analysisbiophysical techniquescomputer studiesdesigndimerhydrophilicityin vivoinnovationinsightinventionlight scatteringmembrane biogenesismutantnew therapeutic targetnovelnovel therapeuticspathogenpathogenic bacteriaperiplasmpressureprotein complexprotein protein interactionprotein transportstructural biology
项目摘要
Project Summary
Lipopolysaccharide (LPS) is the major component of the outer leaflet of the outer membrane (OM) of Gram-
negative bacteria such as Escherichia coli, Salmonella typhimurium and many other important pathogens. LPS
(or endotoxin) is essential for survival in this large class of bacteria and serves as a first line of defense against
hostile environments encountered during host infection. Given the essential role of LPS in the survival of Gram-
negative bacteria – i.e., the bacterial cells die if any step of LPS transport does not occur – and the unique cell
surface it creates, a detailed understanding of the proteins and mechanisms involved in LPS synthesis and
transport will be the foundation on which to develop novel antibiotics against these promising new drug targets.
Seven proteins make up the LPS transport (Lpt) system: the inner membrane (IM) ABC transporter LptB2FG,
the membrane-anchored periplasmic protein LptC, the periplasmic protein LptA, which is speculated to form a
bridge between LptC and LptD to protect the hydrophobic acyl chains of LPS during transport through the
periplasm, and the OM protein complex LptDE that inserts LPS into the outer leaflet of the OM. In an exciting
advance, the structures of all seven proteins in the Lpt system involved in LPS transport have now been solved.
Strikingly, the five periplasmic domains of the Lpt system show remarkable structural homology and the crystal
structures provide valuable insights into the mechanism of the essential LPS transport process, yet it is still
unknown how LPS is transported across the putative periplasmic Lpt bridge of Gram-negative bacteria. Great
progress has been made, including identifying the key players in LPS transport, determining the crystal structures
for each of the Lpt proteins, developing the bridge model, and identifying and quantitating the LPS binding site
on LptA and LptC, and yet many questions remain regarding the mechanism of transport of such a critical
molecule in Gram-negative bacterial physiology. The hypothesis that unfolding/folding events occur in the
periplasmic Lpt proteins to move LPS along the periplasmic bridge and that removal of amino acid side chains
critical to the stabilization of the protein-protein and protein-lipid interactions will disrupt LPS transport in vivo will
be tested through a combination of complementary biophysical techniques, computational studies and in vivo
assays. The successful completion of the proposed aims will include the identification and quantitation of the
interaction interfaces of the periplasmic bridge assembly for LPS transport in Gram-negative bacteria and the
mechanism and quantitation of LPS binding to each periplasmic domain in the Lpt system to yield important
insights into the essential LPS transport process in bacteria. The long-term goal of this research is to understand
the protein-protein and protein-ligand interactions involved in LPS transport to enable the effective design of
novel drugs to selectively inhibit LPS transport in Gram-negative pathogens.
项目概要
脂多糖(LPS)是革兰氏菌外膜(OM)外层的主要成分。
阴性细菌,如大肠杆菌、鼠伤寒沙门氏菌和许多其他重要的病原体。
(或内毒素)对于这一大类细菌的生存至关重要,并且是抵抗细菌的第一道防线
鉴于LPS在革兰氏菌生存中的重要作用,宿主感染期间遇到的敌对环境。
阴性细菌 - 即如果 LPS 运输的任何步骤不发生,细菌细胞就会死亡 - 并且独特的细胞
它创造的表面,详细了解脂多糖合成和参与的蛋白质和机制
运输将成为开发针对这些有希望的新药物靶点的新型抗生素的基础。
七种蛋白质组成 LPS 转运 (Lpt) 系统:内膜 (IM) ABC 转运蛋白 LptB2FG、
膜锚定的周质蛋白 LptC,周质蛋白 LptA,推测其形成
LptC 和 LptD 之间的桥梁,以在运输过程中保护 LPS 的疏水酰基链
周质,以及将 LPS 插入 OM 外叶的 OM 蛋白复合物 LptDE。
随着LPS运输的进展,LPT系统中所有七种蛋白质的结构现已得到解决。
引人注目的是,LPt 系统的五个周质域表现出显着的结构同源性,并且晶体
结构为了解重要的 LPS 运输过程的机制提供了有价值的见解,但它仍然是
尚不清楚 LPS 如何穿过假定的革兰氏阴性细菌周质 Lpt 桥。
已取得进展,包括确定 LPS 运输的关键参与者、确定晶体结构
对于每种 Lpt 蛋白,开发桥模型,并识别和定量 LPS 结合位点
关于 LptA 和 LptC,然而关于这种关键物质的运输机制仍然存在许多问题
革兰氏阴性细菌生理学中的分子 展开/折叠事件发生在
周质 Lpt 蛋白沿着周质桥移动 LPS 并去除氨基酸侧链
对蛋白质-蛋白质和蛋白质-脂质相互作用的稳定至关重要,会破坏体内 LPS 运输
通过互补的生物物理技术、计算研究和体内试验相结合进行测试
成功完成所提出的目标将包括鉴定和定量。
革兰氏阴性菌脂多糖转运周质桥组件的相互作用界面
LPS 与 Lpt 系统中每个周质结构域结合的机制和定量,以产生重要的结果
深入了解细菌中重要的脂多糖转运过程。这项研究的长期目标是了解。
LPS 转运中涉及的蛋白质-蛋白质和蛋白质-配体相互作用,以便能够有效设计
选择性抑制革兰氏阴性病原体中脂多糖转运的新药。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CANDICE S KLUG其他文献
CANDICE S KLUG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CANDICE S KLUG', 18)}}的其他基金
Development of high-throughput, high-sensitivity EPR sample handling capabilities for biomedical research
开发用于生物医学研究的高通量、高灵敏度 EPR 样品处理能力
- 批准号:
10530690 - 财政年份:2021
- 资助金额:
$ 35.42万 - 项目类别:
Development of high-throughput, high-sensitivity EPR sample handling capabilities for biomedical research
开发用于生物医学研究的高通量、高灵敏度 EPR 样品处理能力
- 批准号:
10323039 - 财政年份:2021
- 资助金额:
$ 35.42万 - 项目类别:
Administrative Supplement to Development of high-throughput, high-sensitivity EPR sample handling capabilities for biomedical research
生物医学研究高通量、高灵敏度 EPR 样品处理能力开发的行政补充
- 批准号:
10796325 - 财政年份:2021
- 资助金额:
$ 35.42万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10371815 - 财政年份:2022
- 资助金额:
$ 35.42万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 35.42万 - 项目类别:
Impact of the microbiome on chemotherapeutic outcomes
微生物组对化疗结果的影响
- 批准号:
10536655 - 财政年份:2021
- 资助金额:
$ 35.42万 - 项目类别:
Production of human mitochondrial ABC transporters for structural and biochemical studies
生产用于结构和生化研究的人类线粒体 ABC 转运蛋白
- 批准号:
10482375 - 财政年份:2021
- 资助金额:
$ 35.42万 - 项目类别: