Non-Coding Genetic Vulnerabilities in Human Photoreceptor Function and Disease
人类感光功能和疾病中的非编码遗传漏洞
基本信息
- 批准号:10372058
- 负责人:
- 金额:$ 45.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAddressAdultAffectAgeAutomobile DrivingBindingBinding SitesBiological AssayBiological ProcessCRISPR/Cas technologyCase StudyCell physiologyChIP-seqChromatinComplexConserved SequenceDNADNA SequenceDNA Sequence AlterationDataDevelopmentDiagnosisDiagnosticDiseaseElementsEnhancersEssential GenesGene ExpressionGene Expression RegulationGenesGeneticGenetic Predisposition to DiseaseGenetic VariationGenomeGenomicsGoalsHumanHuman ActivitiesHuman GenomeIn VitroIndividualInheritedKnowledgeLeadLocationMapsMethodsMusMutationNucleic Acid Regulatory SequencesOrganoidsPathogenicityPatientsPersonsPhotoreceptorsPublic HealthRegulationRegulatory ElementReporterResearchResourcesRetinaRetinal DiseasesRoleShapesSiteStructureSystemTestingTimeUntranslated RNAVariantVisionVision DisordersVisualWorkbasecell typedisease-causing mutationgene therapygenetic disorder diagnosisgenetic variantgenomic locushuman diseaseimprovedin vivoinsightnovelpromotersuccesstargeted treatmenttherapy developmenttranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Cis-regulatory elements (CREs) are critical sites of transcription factor (TF) binding to the genome that
orchestrate the expression of genes necessary for normal cellular function. Mutations within CREs can disrupt
TF binding and cause inherited human diseases including disorders of vision. The genomic location and
function of CREs that are necessary for human vision is largely unknown. This gap in knowledge is a
significant obstacle toward understanding the genetic regulation of normal human vision and to identifying
disease-causing mutations with CREs. The long-term goal for our research is to understand how genetic
variation within CREs shapes the structure and function of the retina and contributes to human vision. The
focused objective of this proposal is to determine the mechanisms by which CREs regulate essential gene
expression in photoreceptor cells and to determine how genetic mutations within CREs lead to retinal
disease. The central hypothesis driving this work is that discrete DNA sequences within CREs are required to
regulate essential photoreceptor gene expression and that CRE mutations that disrupt evolutionarily conserved
TF binding sites contribute to inherited visual disorders. To test this hypothesis we are pursuing the following
specific aims: 1) Determine the activity of human photoreceptor CREs in human retinal organoids using ATAC-
Seq, ChIP-Seq and RNA-Seq to compare them to CREs we have previously identified from adult and
developing human retinas. This will demonstrate the utility of organoids for studying photoreceptor CREs in
their native cellular-genomic context. 2) Test the function of patient-derived variants in human photoreceptor
CREs. Using high-throughput AAV-based reporter assays we will determine which CREs sequences are
sufficient to drive cell-type-specific expression in the mouse retina and human retinal organoids and determine
the consequence of sequence variants on CRE activity. 3) Determine the mechanisms by which multiple CREs
regulate the expression of a critical photoreceptor transcription factor, NRL. CRISPR/Cas9-based approaches
will target specific CREs at the NRL locus to reveal the contribution of each CRE to the expression of this
essential gene and to serve as a case study for the regulation of other essential genes. The contribution of this
research will be to elucidate the mechanisms by which CREs regulate genes that are necessary for human
photoreceptor function and survival. This work will enable the systematic identification and interpretation of
genetic variants within CREs and therefore improve genetic diagnostics for unexplained retinal disease. By
opening up the non-coding genome to functional analyses it will be possible for the first time to determine the
mechanisms by which individual CREs regulate specific genes that are critical for photoreceptor cell function in
a high-throughput and comprehensive manner. This will enable discovery of genetic contributions to human
vision and inherited visual diseases that have thus far been inaccessible.
项目概要/摘要
顺式调控元件 (CRE) 是转录因子 (TF) 与基因组结合的关键位点,
协调正常细胞功能所需基因的表达。 CRE 内的突变可能会破坏
TF 结合会导致遗传性人类疾病,包括视力障碍。基因组位置和
人类视觉所必需的 CRE 的功能在很大程度上尚不清楚。这种知识差距是
理解正常人类视觉的基因调控和识别的重大障碍
CRE 的致病突变。我们研究的长期目标是了解遗传如何
CRE 内的变异塑造了视网膜的结构和功能,并有助于人类视觉。这
该提案的重点目标是确定 CRE 调节必需基因的机制
感光细胞中的表达并确定 CRE 内的基因突变如何导致视网膜
疾病。推动这项工作的核心假设是 CRE 中离散的 DNA 序列需要
调节重要的光感受器基因表达以及破坏进化保守性的 CRE 突变
TF 结合位点会导致遗传性视觉障碍。为了检验这个假设,我们正在追求以下内容
具体目标: 1) 使用 ATAC- 确定人类视网膜类器官中人类光感受器 CRE 的活性
Seq、ChIP-Seq 和 RNA-Seq,将它们与我们之前从成人和成人中鉴定出的 CRE 进行比较
人类视网膜正在发育。这将证明类器官在研究光感受器 CRE 方面的实用性
他们的原生细胞基因组背景。 2) 测试人类光感受器中源自患者的变异的功能
商业地产 (CRE)。使用基于 AAV 的高通量报告分析,我们将确定哪些 CRE 序列是
足以驱动小鼠视网膜和人视网膜类器官中的细胞类型特异性表达并确定
序列变异对 CRE 活性的影响。 3) 确定多个 CRE 的机制
调节关键光感受器转录因子 NRL 的表达。基于 CRISPR/Cas9 的方法
将针对 NRL 基因座的特定 CRE,以揭示每个 CRE 对此表达的贡献
必需基因并作为其他必需基因调控的案例研究。本次活动的贡献
研究将阐明 CRE 调节人类必需基因的机制
光感受器功能和存活。这项工作将能够系统地识别和解释
CRE 内的遗传变异,从而改善不明原因视网膜疾病的遗传诊断。经过
开放非编码基因组进行功能分析将有可能第一次确定
单个 CRE 调节对感光细胞功能至关重要的特定基因的机制
高通量、综合性的方式。这将使发现基因对人类的贡献成为可能
视力和遗传性视力疾病是迄今为止无法治愈的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TIMOTHY JOEL CHERRY其他文献
TIMOTHY JOEL CHERRY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TIMOTHY JOEL CHERRY', 18)}}的其他基金
Optimizing Models of Non-Coding Genetic Risk in Age-Related Macular Degeneration
年龄相关性黄斑变性非编码遗传风险模型的优化
- 批准号:
10343475 - 财政年份:2022
- 资助金额:
$ 45.66万 - 项目类别:
Optimizing Models of Non-Coding Genetic Risk in Age-Related Macular Degeneration
年龄相关性黄斑变性非编码遗传风险模型的优化
- 批准号:
10574620 - 财政年份:2022
- 资助金额:
$ 45.66万 - 项目类别:
Non-Coding Genetic Vulnerabilities in Human Photoreceptor Function and Disease
人类感光功能和疾病中的非编码遗传漏洞
- 批准号:
10132332 - 财政年份:2019
- 资助金额:
$ 45.66万 - 项目类别:
Non-Coding Genetic Vulnerabilities in Human Photoreceptor Function and Disease
人类感光功能和疾病中的非编码遗传漏洞
- 批准号:
9902484 - 财政年份:2019
- 资助金额:
$ 45.66万 - 项目类别:
Non-Coding Genetic Vulnerabilities in Human Photoreceptor Function and Disease
人类感光功能和疾病中的非编码遗传漏洞
- 批准号:
10596515 - 财政年份:2019
- 资助金额:
$ 45.66万 - 项目类别:
The role of cortical neuron and circuit function in tau induced neurodegeneration
皮质神经元和回路功能在 tau 诱导的神经变性中的作用
- 批准号:
8097548 - 财政年份:2010
- 资助金额:
$ 45.66万 - 项目类别:
The role of cortical neuron and circuit function in tau induced neurodegeneration
皮质神经元和回路功能在 tau 诱导的神经变性中的作用
- 批准号:
8258751 - 财政年份:2010
- 资助金额:
$ 45.66万 - 项目类别:
The role of cortical neuron and circuit function in tau induced neurodegeneration
皮质神经元和回路功能在 tau 诱导的神经变性中的作用
- 批准号:
7912300 - 财政年份:2010
- 资助金额:
$ 45.66万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
Gene regulatory networks in early lung epithelial cell fate decisions
早期肺上皮细胞命运决定中的基因调控网络
- 批准号:
10587615 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别:
Investigating HDAC3 phosphorylation as an epigenetic regulator of memory formation in the adult and aging brain
研究 HDAC3 磷酸化作为成人和衰老大脑记忆形成的表观遗传调节剂
- 批准号:
10752404 - 财政年份:2023
- 资助金额:
$ 45.66万 - 项目类别: