Development of Dynamic Resting State Functional Connectivity Machine Learning Framework for Dementia
痴呆症动态静息态功能连接机器学习框架的开发
基本信息
- 批准号:10371520
- 负责人:
- 金额:$ 14.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAlzheimer&aposs DiseaseAreaAwardBenchmarkingBiological MarkersBiometryBrainCharacteristicsClinicalCognitiveDataData AnalysesDementiaDevelopmentDoctor of MedicineDoctor of PhilosophyElectroencephalographyEpidemiologyFoundationsFunctional ImagingFunctional Magnetic Resonance ImagingGoalsImageImaging TechniquesImpaired cognitionIndividualInterventionKnowledgeLeadLearningMentorsMethodologyMethodsMonitorMultimodal ImagingNatureNeurodegenerative DisordersNeurologic DysfunctionsNeurologyNeurosciencesPatternPersonsProceduresResearchResearch PersonnelRestRiskSamplingSymptomsTechnical ExpertiseTestingTimeTrainingTreatment EfficacyUnited StatesValidationWorkbiomedical imagingcareercognitive changecognitive performancecognitive testingearly screeningefficacious treatmentfeature extractionfeature selectionhigh dimensionalityimaging biomarkerimaging modalitymachine learning frameworkmachine learning methodmachine learning modelmethod developmentmultidisciplinarymultimodal neuroimagingneuroimagingneuroimaging markernext generationpredictive modelingpreventradiological imagingstatistical and machine learningsuccesstherapy designtreatment effect
项目摘要
Project Summary/Abstract
The objective of this proposal is to provide a robust course of training for Fei Jiang, Ph.D., a candidate with
an excellent foundation in statistical and machine learning research, to enable her to become an independent
investigator in the field of quantitative data analysis and statistical/machine learning methods development for
neuroimaging research. The proposed research aims to extract dynamic resting-state functional connectivity
from multimodality imaging and use them for the prediction of cognitive decline. The central hypothesis is that
the resting state functional connectivity changes over the imaging acquisition period, and this dynamic pattern is
crucial for the optimal prediction of cognitive decline. Towards proving this hypothesis, a unique machine learn-
ing framework is proposed to (1) robustly extract dynamic resting-state functional connectivity from multimodality
imaging; (2) identify the important features that are associated with individuals' cognitive scores; and (3) predict
cognitive decline using the identified important features. Successful completion of the proposed research will
provide the next generation machine learning framework for the extraction and analysis of dynamic resting-state
functional connectivity and lead to potential endpoints that can be used in the assessment of treatment effects.
Recognizing the multidisciplinary nature of the work proposed, the author will be mentored and work closely with
an expert committee from multiple scientific areas of relevance to the project (Neuroimaging, Neurodegenerative
disease, Biostatistics): Srikantan Nagarajan (primary mentor), Ph.D., Department of Radiology and Biomedical
Imaging, Ashish Raj (co-mentor), Ph.D., Department Radiology and Biomedical Imaging, William W. Seeley (ad-
visor), M.D., Ph.D., Department of Neurology, John Kornak (advisor), Ph.D., Department of Epidemiology and
Biostatistics, Marilu Gorno Tempini (collaborator), M.D., Ph.D., Department of Neurology, Charles McCulloch
(collaborator), Ph.D., Department of Epidemiology and Biostatistics. This committee will be coordinated by Dr.
Nagarajan. The goal is that by the end of the K25, Dr. Jiang will have the requisite knowledge, technical skills,
and expertise to submit a successful R01 proposal that integrates her expertise in statistical and machine learn-
ing methods with a knowledge of the questions and approaches pertaining to imaging in neuroscience, acquired
through this training period.
项目概要/摘要
该提案的目的是为姜飞博士提供一个强有力的培训课程,他是一位具有以下能力的候选人
在统计和机器学习研究方面拥有良好的基础,使她能够成为独立的
定量数据分析和统计/机器学习方法开发领域的研究员
神经影像研究旨在提取动态静息态功能连接。
多模态成像并用它们来预测认知能力下降的中心假设是:
静息态功能连接在成像采集期间发生变化,这种动态模式是
为了证明这一假设,一种独特的机器学习对于认知能力下降的最佳预测至关重要。
提出框架是为了(1)从多模态中稳健地提取动态静息态功能连接
成像;(2) 识别与个体认知评分相关的重要特征;以及 (3) 预测
使用所确定的重要特征的认知能力下降将成功完成所提出的研究。
提供下一代机器学习框架,用于动态静息态的提取和分析
功能连接并产生可用于评估治疗效果的潜在终点。
认识到所提出的工作的多学科性质,作者将得到指导并与以下人员密切合作
来自与该项目相关的多个科学领域(神经影像学、神经退行性疾病)的专家委员会
疾病、生物统计学):Srikantan Nagarajan(主要导师),放射学和生物医学系博士
影像学,Ashish Raj(共同导师),放射学和生物医学影像系博士,William W. Seeley(广告-
John Kornak(顾问),医学博士,哲学博士,神经病学系,John Kornak(顾问),哲学博士,流行病学系
生物统计学,Marilu Gorno Tempini(合作者),医学博士、哲学博士,神经病学系,Charles McCulloch
(合作者),流行病学和生物统计学系博士,该委员会将由博士负责协调。
Nagarajan 的目标是,到 K25 结束时,Jiang 博士将具备必要的知识、技术技能、
和专业知识来提交成功的 R01 提案,该提案整合了她在统计和机器学习方面的专业知识 -
了解与神经科学成像相关的问题和方法的方法,获得
通过这段时间的训练。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
fei jiang其他文献
fei jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('fei jiang', 18)}}的其他基金
Development of Dynamic Resting State Functional Connectivity Machine Learning Framework for Dementia
痴呆症动态静息态功能连接机器学习框架的开发
- 批准号:
10677543 - 财政年份:2022
- 资助金额:
$ 14.53万 - 项目类别:
Development of Dynamic Resting State Functional Connectivity Machine Learning Framework for Dementia
痴呆症动态静息态功能连接机器学习框架的开发
- 批准号:
10677543 - 财政年份:2022
- 资助金额:
$ 14.53万 - 项目类别:
相似国自然基金
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
MASS: Muscle and disease in postmenopausal women
MASS:绝经后妇女的肌肉和疾病
- 批准号:
10736293 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
In vivo Evaluation of Lymph Nodes Using Quantitative Ultrasound
使用定量超声对淋巴结进行体内评估
- 批准号:
10737152 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 14.53万 - 项目类别: