Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素的 Isthmin 通路控制葡萄糖稳态
基本信息
- 批准号:10201593
- 负责人:
- 金额:$ 47.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipocytesAdipose tissueAnimalsBiochemicalBiochemical GeneticsBiologicalBlood GlucoseCardiovascular DiseasesCell Surface ReceptorsChronicComplementDataDiabetes MellitusEffector CellEndocrineEnergy MetabolismEngineeringFatty acid glycerol estersGeneticGlucoseGlucose tolerance testGoalsHigh Fat DietHomeostasisHormonalHormonesHumanIn VitroInsulinInsulin ReceptorInsulin ResistanceInsulin Signaling PathwayKnockout MiceLeadLiverMaintenanceMammalsMediatingMediator of activation proteinMedicalMetabolicMetabolic dysfunctionMethodsMolecularMonitorMusMuscleMuscle FibersNon-Insulin-Dependent Diabetes MellitusOutcomePI3K/AKTPathway interactionsPharmacological TreatmentPharmacologyPhysical activityPhysiologicalPhysiologyPlayPolypeptide HormonesProteinsProteomicsPublic HealthReceptor Protein-Tyrosine KinasesReceptor SignalingRecombinant ProteinsRecombinantsReproducibilityRoleSignal PathwaySignal TransductionSkeletal MuscleStructureSurfaceTherapeuticTherapeutic AgentsTissuesWeight Gainadipokinesblood glucose regulationclinical applicationcombatdiabeticeuglycemiafeedingglucose metabolismglucose uptakehormonal signalsimprovedin vivoinnovationinsightinsulin sensitivitymetabolic phenotypemultidisciplinarymutantnovelnovel therapeutic interventionnovel therapeuticsobesity treatmentoverexpressiontherapeutic targettooltranslation to humansvector
项目摘要
PROJECT SUMMARY
Chronic metabolic dysfunction has emerged as one of the most severe medical problems worldwide, leading
to increases in type 2 diabetes, insulin resistance, and cardiovascular disease. The discovery of alternative
pathways to regulate whole-body glucose and energy metabolism is urgently needed to address this great
medical need. Such pathways could be exploited for new therapeutic strategies to combat diabetes and
insulin resistance. Using a multidisciplinary strategy combining computational, cellular, and in vivo
approaches, we have recently uncovered a new adipokine from thermogenic adipose, Isthmin-1 (Ism1), that
acts to promote glucose uptake in mouse and human adipocytes. The action of Ism1 requires PI3K/AKT
signaling but is entirely independent of the insulin receptor. In animals rendered diabetic by high-fat diet
feeding, administration of recombinant Ism1 protein or genetic elevation of circulating Ism1 improves
glucose homeostasis. However, more studies are needed in order to understand the contribution of Ism1 to
glucose metabolism, and to leverage this understanding for therapeutic purposes. The overall objectives in
this proposal are to establish how Ism1 can control blood glucose by determining the signaling effectors and
cell surface receptor that mediate the action, determine the endogenous physiological function for Ism1, and
evaluate the pharmacological potential of Ism1 as a therapeutic target. In Aim 1, we will utilize biochemical,
genetic, and proteomic methods to identify the signaling pathways and cell surface receptor responsible for
the signaling action and glucoregulatory mechanisms of Ism1. These studies will identify Ism1’s mechanism
of action and will be critical for our understanding of Ism1 signaling as an insulin-independent pathway to
regulate glucose uptake. In Aim 2, we will determine the physiological function for Ism1 using our generated
whole-body and adipocyte-specific Ism1 knockout mice. These studies are essential in determining the
endogenous role of Ism1 in glucose metabolism. In Aim 3, we will determine the minimal requirements for
Ism1 bioactivity by generating fragments, mutants, and engineered forms of Ism1. This aim will pave the
way for further optimization of a polypeptide hormone as a therapeutic agent, and will be essential in
understanding the effects of augmentation of this novel pathway physiology. These contributions are
expected to be significant because pathways that can regulate glucose independently of insulin will open
entirely new avenues to overcome insulin resistance and diabetes, which could have a significant public
health impact.
项目概要
慢性代谢功能障碍已成为全球最严重的医学问题之一,导致
2 型糖尿病、胰岛素抵抗和心血管疾病的增加。
迫切需要调节全身葡萄糖和能量代谢的途径来解决这一重大问题
此类途径可用于对抗糖尿病和糖尿病的新治疗策略。
胰岛素抵抗采用结合计算、细胞和体内的多学科策略。
最近,我们从产热脂肪中发现了一种新的脂肪因子 Isthmin-1 (Ism1),
促进小鼠和人类脂肪细胞的葡萄糖摄取 Ism1 的作用需要 PI3K/AKT。
信号传导,但在因高脂肪饮食而患糖尿病的动物中完全独立于胰岛素受体。
喂养、施用重组 Ism1 蛋白或循环 Ism1 基因升高可改善
然而,需要更多的研究来了解 Ism1 对葡萄糖稳态的贡献。
葡萄糖代谢,并将这种理解用于治疗目的。
该提案旨在确定 Ism1 如何通过确定信号效应器来控制血糖
介导作用的细胞表面受体,确定 Ism1 的内源性生理功能,以及
评估 Ism1 作为治疗靶点的药理学潜力 在目标 1 中,我们将利用生化、
遗传和蛋白质组学方法来识别负责的信号传导途径和细胞表面受体
Ism1 的信号传导作用和葡萄糖调节机制。这些研究将确定 Ism1 的机制。
的作用,对于我们理解 Ism1 信号传导作为一种独立于胰岛素的途径至关重要
在目标 2 中,我们将使用我们生成的结果确定 Ism1 的生理功能。
这些研究对于确定全身和脂肪细胞特异性 Ism1 敲除小鼠至关重要。
在目标 3 中,我们将确定 Ism1 在葡萄糖代谢中的内源性作用。
通过生成 Ism1 的片段、突变体和工程形式来提高 Ism1 的生物活性。
进一步优化多肽激素作为治疗剂的方法,并且对于
了解这种新途径生理学增强的影响。
预计将成为重要的途径,因为它可以独立于胰岛素调节血糖
克服胰岛素抵抗和糖尿病的全新途径,可能会吸引大量公众
健康影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katrin Jennifer Svensson其他文献
Katrin Jennifer Svensson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katrin Jennifer Svensson', 18)}}的其他基金
Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素的 Isthmin 通路控制葡萄糖稳态
- 批准号:
10408045 - 财政年份:2020
- 资助金额:
$ 47.96万 - 项目类别:
Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素的 Isthmin 通路控制葡萄糖稳态
- 批准号:
10633205 - 财政年份:2020
- 资助金额:
$ 47.96万 - 项目类别:
Control of glucose homeostasis through the insulin-independent Isthmin pathway
通过不依赖胰岛素的 Isthmin 通路控制葡萄糖稳态
- 批准号:
10025485 - 财政年份:2020
- 资助金额:
$ 47.96万 - 项目类别:
The role of circulating Slit2 in adipose thermogenesis and diabetes
循环 Slit2 在脂肪产热和糖尿病中的作用
- 批准号:
9349495 - 财政年份:2016
- 资助金额:
$ 47.96万 - 项目类别:
相似国自然基金
巨噬细胞GP73-CXCL5调节脂肪组织适应性产热的机制研究
- 批准号:32300573
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
- 批准号:82301753
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同脂肪组织及其驻留巨噬细胞调控小鼠禁食稳态的系统研究
- 批准号:32301235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MYO9B缺失调控脂肪组织巨噬细胞代谢重编程促进肥胖相关胰岛素抵抗的机制研究
- 批准号:82300948
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Arid5b调控Treg细胞脂肪组织适应性发育和代谢调控功能及机制探究
- 批准号:82371752
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Them1 Inhibitors for the Management of Non-Alcoholic Fatty Liver Disease
Them1 治疗非酒精性脂肪肝的抑制剂
- 批准号:
10666090 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
PDGFRB Signaling in Progressive Skin Disease
进行性皮肤病中的 PDGFRB 信号传导
- 批准号:
10583948 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Mechanical properties of adipose tissue and its effect on breast cancer
脂肪组织的力学特性及其对乳腺癌的影响
- 批准号:
10737165 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10703523 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别:
Modifying adipocyte and pre-adipocyte cell fate in fibroadipose tissue of secondary lymphedema
改变继发性淋巴水肿纤维脂肪组织中的脂肪细胞和前脂肪细胞细胞命运
- 批准号:
10571049 - 财政年份:2023
- 资助金额:
$ 47.96万 - 项目类别: