Development of a Fully Enzymatic Oligonucleotide Synthesis Cycle by Engineered Template Independent Polymerases and a Novel Phosphate dNTP Blocking Group
通过工程模板独立聚合酶和新型磷酸 dNTP 封闭基团开发全酶促寡核苷酸合成循环
基本信息
- 批准号:10201535
- 负责人:
- 金额:$ 25.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-16 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAlgorithm DesignAlkaline PhosphataseAmino AcidsBiological AssayBlood capillariesChargeChemicalsChemistryComputer softwareDNADNA DamageDNA NucleotidylexotransferaseDNA SequenceDNA biosynthesisDNA chemical synthesisDevelopmentEngineeringEnzymesExcisionExhibitsExodeoxyribonuclease IFamily memberFormulationFoundationsGoalsHazardous WasteHomologous GeneHydroxyl RadicalIndividualKnowledgeLeadLengthLibrariesMass Spectrum AnalysisMeasurementMethodsModelingMolecular BiologyMutagenesisMutationNucleotidesOligonucleotide PrimersOligonucleotidesPhasePhenotypePhylogenetic AnalysisPolymerasePreparationPrimer ExtensionProcessProtein EngineeringProteinsProtocols documentationResearchScreening ResultShapesShrimpSiteSmall Business Innovation Research GrantSoftware DesignSourceSpecificityTechnologyTestingTreatment StepVariantWorkanalogaqueousbasecostdesignexperimental studygel electrophoresisgenome editinghigh throughput screeningimprovedin silicoinorganic phosphatemolecular assembly/self assemblymutantnext generation sequencingnovelnovel therapeuticsnucleotide analogphosphoramiditescreeningsynthetic biologywasting
项目摘要
Project Summary/Abstract
DNA synthesis has revolutionized the field of synthetic biology, leading to new therapeutics, bio-based
fuels and chemicals, and materials. The chemical method to synthesize DNA was developed over 30
years ago and is still challenged by high costs and limits in DNA length (<200 nucleotides). As synthetic
biology has outpaced current DNA synthesis technology, the scope of many research approaches is now
limited by cost and length of synthesized DNA. Enzymatic DNA synthesis approaches employ
polymerase enzymes and stepwise incorporation and deprotection of blocked nucleotides (dNTPs) and
are a promising alternative to overcome the limitations of chemical DNA synthesis. Despite their potential,
most enzymatic approaches still rely on chemical treatment steps to remove blocking groups from the
synthesized sequence. Chemical deblocking steps can produce hazardous waste and repeatedly subject
oligonucleotides to degradative chemicals. In this Phase I SBIR proposal, Molecular Assemblies Inc.
proposes to develop a fully enzymatic DNA synthesis approach. This approach has at its core three key
enzymatic steps: 1) polymerase incorporation of 3′-O-blocked nucleotides, 2) an enzymatic deblocking
step to remove the phosphate blocking group from the 3′-hydroxyl, and 3) a novel enzymatic clean-up to
deplete unreacted material. By utilizing the efficiency and specificity of enzymatic rather than chemical
processes, we seek to develop an environmentally friendly DNA synthesis approach with the goal of
generating longer (>200 nucleotides), purer DNA. One key target of the proposed work is to engineer the
template-independent polymerase, Terminal deoxynucleotidyl Transferase (TdT), for improved 3′-O-
phosphate dNTP incorporation. We will couple 1) rational design of amino acid mutations using the
protein design software, Rosetta, and 2) in silico bioprospecting to produce screening libraries comprising
phylogenetically diverse TdT backgrounds. This combined enzyme engineering approach has great
potential to identify enzyme mutants with distinct phenotypes. We will express and screen the resulting
targeted libraries using our established high-throughput nucleotide incorporation assays to identify the
most active TdT variants. We will then optimize the enzymatic clean-up and deblocking steps with the
goal of performing a short proof of concept DNA synthesis using the lead TdT variant(s) and 3′-O-
phosphate-nucleotides. Knowledge gained from Phase I protein engineering and short synthesis tests
will guide further TdT improvements in Phase II towards synthesis of DNA with longer lengths and with
lower error rates. The fully enzymatic synthesis cycle proposed to be developed represents a complete
workflow for DNA synthesis, with commercial potential for implementation as a replacement for chemical
DNA manufacturing.
项目概要/摘要
DNA 合成彻底改变了合成生物学领域,催生了新的生物疗法
合成 DNA 的化学方法已被开发了 30 多种。
几年前,仍然面临着高成本和 DNA 长度限制(<200 个核苷酸)的挑战。
生物学已经超越了当前的 DNA 合成技术,许多研究方法的范围现在已经扩大
受限于合成 DNA 的成本和长度。
聚合酶以及封闭核苷酸 (dNTP) 的逐步掺入和脱保护以及
尽管具有潜力,但它是克服化学 DNA 合成局限性的一种有前途的替代方案。
大多数酶促方法仍然依赖于化学处理步骤来去除封闭基团
化学解封闭步骤会产生危险废物并重复进行。
在此第一阶段 SBIR 提案中,Molecular Assemblies Inc.
建议开发一种全酶促 DNA 合成方法,该方法的核心是三个关键。
酶促步骤:1) 聚合酶掺入 3'-O-封闭核苷酸,2) 酶解封闭
从 3'-羟基上去除磷酸盐封闭基团的步骤,以及 3) 一种新颖的酶清理方法
通过利用酶而不是化学的效率和特异性来消耗未反应的物质。
过程中,我们寻求开发一种环境友好的 DNA 合成方法,目标是
生成更长(>200 个核苷酸)、更纯的 DNA 是这项工作的一个关键目标。
不依赖模板的聚合酶,末端脱氧核苷酸转移酶 (TdT),用于改进 3′-O-
我们将使用 1) 合理设计氨基酸突变。
蛋白质设计软件 Rosetta,以及 2) 计算机生物勘探,以产生包含以下内容的筛选文库
这种组合酶工程方法具有丰富的系统发育多样性。
鉴定具有不同表型的酶突变体的潜力,我们将表达并筛选所得的结果。
使用我们建立的高通量核苷酸掺入分析来鉴定目标文库
然后,我们将使用最活跃的 TdT 变体优化酶清理和解封闭步骤。
使用主要 TdT 变体和 3′-O- 进行简短的概念 DNA 合成验证的目标
从第一阶段蛋白质工程和短合成测试中获得的知识。
将指导第二阶段进一步 TdT 改进,以合成更长长度的 DNA
拟开发的全酶合成循环代表了一个完整的错误率。
DNA 合成工作流程,具有替代化学物质的商业潜力
DNA制造。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natasha Paul其他文献
Natasha Paul的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Natasha Paul', 18)}}的其他基金
Improved Library Preparation Workflows for Next Generation Sequencing
改进下一代测序的文库制备工作流程
- 批准号:
8455912 - 财政年份:2013
- 资助金额:
$ 25.62万 - 项目类别:
Chemical Determinants of DNA Ligase Fidelity
DNA 连接酶保真度的化学决定因素
- 批准号:
8012837 - 财政年份:2008
- 资助金额:
$ 25.62万 - 项目类别:
Chemical Determinants of DNA Ligase Fidelity
DNA 连接酶保真度的化学决定因素
- 批准号:
7804021 - 财政年份:2008
- 资助金额:
$ 25.62万 - 项目类别:
Chemical Determinants of DNA Ligase Fidelity
DNA 连接酶保真度的化学决定因素
- 批准号:
7537086 - 财政年份:2008
- 资助金额:
$ 25.62万 - 项目类别:
Chemically Modified dNTPs as a General Approach to Improved Hot Start PCR
化学修饰 dNTP 作为改进热启动 PCR 的通用方法
- 批准号:
7481828 - 财政年份:2007
- 资助金额:
$ 25.62万 - 项目类别:
Chemically Modified dNTPs as a General Approach to Improved Hot Start PCR
化学修饰 dNTP 作为改进热启动 PCR 的通用方法
- 批准号:
7634464 - 财政年份:2007
- 资助金额:
$ 25.62万 - 项目类别:
相似国自然基金
知识图谱与算法融合的医院门诊空间生成设计研究
- 批准号:52378024
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
非零和微分博弈脉冲控制系统的动力学研究及学习算法设计
- 批准号:62373310
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
- 批准号:22308228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 25.62万 - 项目类别:
Standard Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 25.62万 - 项目类别:
Continuing Grant
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 25.62万 - 项目类别:
Standard Grant
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 25.62万 - 项目类别:
Standard Grant
Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design
通过算法-硬件协同设计在无线边缘进行实时联合学习
- 批准号:
EP/X019160/1 - 财政年份:2023
- 资助金额:
$ 25.62万 - 项目类别:
Research Grant