Nanodisc-displayed Protein Vaccines

纳米盘展示的蛋白质疫苗

基本信息

项目摘要

ABSTRACT Neisseria gonorrhoeae (Ng) is a human-specific pathogen and the etiological agent of gonorrhea, a sexually transmitted infection with a significant global health burden of ~78 million new cases annually. While often asymptomatic, untreated gonorrhea can lead to pelvic inflammatory disease, ectopic pregnancy, infertility, and increased transmission/acquisition of HIV. Because of the inexorable increase in antibiotic resistance, a protective gonorrhea vaccine may be the only way to control disease transmission in the future. The recent successes of the MenZB and 4CMenB outer membrane vesicle vaccines for Group B N. meningitidis (Nm) provides a strong premise for development of an effective gonorrhea vaccine. Retrospective data suggested that the MenZB vaccine was 31% effective against gonorrhea in the immunized cohort. In support of this finding, we have shown that immunization with the similar 4CMenB vaccine markedly increased Ng clearance in the mouse model of gonorrhea, and sera from 4CMenB-vaccinated mice cross-reacted with MtrE, BamA, and PilQ from Ng outer membranes. Based on these data and the surface exposure, omnipresence, sequence conservation, and importance in vital cellular functions of MtrE, BamA, and PilQ, we hypothesize that antibodies directed at the extracellular regions of these antigens will provide protection against gonorrhea. Accordingly, the overarching goal of this collaborative translational project is to develop a gonorrhea vaccine(s) by targeting MtrE, BamA, and PilQ. Subunit antigens are proven candidates for vaccine development due to their safety, cost-effectiveness, and rapid preparation. To develop effective gonorrhea vaccine(s), we propose an innovative approach of incorporating the aforementioned antigens into nanoparticle platforms called nanodiscs (NDs) and combining with different adjuvants in our vaccine formulations. NDs will enable antigen multivalency and native shape that are important determinants of vaccine potency and efficacy, while adjuvants will be used to amplify robust antigen-specific responses. For Project 3 of the Gonorrhea Vaccine Cooperative Research Center (GV CRC), we will: i) purify full-length and/or the β-barrel regions of MtrE, BamA, and PilQ and natively display the proteins in NDs (Specific Aim 1); ii) protein-NDs will be combined with different adjuvant compositions to induce robust and balanced Th1/Th2 responses, and the resulting sera will be assessed for immunoglobulin subtypes, serum bactericidal and opsonophagocytolytic activity, and binding to intact Ng (Specific Aim 2); and iii) test the most promising antigen-ND/adjuvant combinations in the lower and upper reproductive tract mouse models of Ng infection, as well as in a mixed Ng/Chlamydia muridarum infection model, for their capacity to decrease the time of infection (Specific Aim 3). The success of the GV CRC will be greatly enhanced by the Outer Membrane Vesicles and Proteomics Core (Core B), Host Response Monitoring Core (Core C), the Functional Antibody Study Core (Core D), and the Mouse Immunization/Challenge Core (Core E), which are fully integrated into Aims 2 and 3, for testing the efficacy of the antigen-ND vaccines.
抽象的 淋病奈瑟菌 (Ng) 是一种人类特有的病原体,也是淋病(一种性病)的病原体。 传播感染每年造成约 7800 万新病例的重大全球健康负担。 无症状、未经治疗的淋病可导致盆腔炎、宫外孕、不孕症和 由于抗生素耐药性不可避免地增加,艾滋病毒的传播/感染增加。 保护性淋病疫苗可能是未来控制疾病传播的唯一方法。 针对 B 组脑膜炎奈瑟氏球菌 (Nm) 的 MenZB 和 4CMenB 外膜囊泡疫苗取得了成功 回顾性数据表明,为开发有效的淋病疫苗提供了强有力的前提。 MenZB 疫苗对免疫群体中的淋病有 31% 的有效性,我们支持这一发现。 研究表明,使用类似的 4CMenB 疫苗进行免疫可显着增加小鼠的 Ng 清除率 淋病模型,4CMenB 疫苗接种小鼠的血清与 Ng 的 MtrE、BamA 和 PilQ 发生交叉反应 基于这些数据和表面暴露、无所不在、序列保守和 MtrE、BamA 和 PilQ 在重要细胞功能中的重要性,我们捕获了针对 MtrE、BamA 和 PilQ 的抗体 这些抗原的细胞外区域将提供针对淋病的保护。 该合作转化项目的目标是通过针对 MtrE、BamA 和 PilQ 亚单位抗原因其安全性、成本效益而被证明是疫苗开发的候选者。 为了开发有效的淋病疫苗,我们提出了一种创新方法: 将抗原整合到称为纳米圆盘 (ND) 的纳米颗粒平台中,并结合 在我们的疫苗配方中使用不同的佐剂将使抗原具有多价性和天然形状。 是疫苗效力和功效的重要决定因素,而佐剂将用于增强疫苗的效力和功效 对于淋病疫苗合作研究中心 (GV CRC) 的项目 3, 我们将: i) 纯化 MtrE、BamA 和 PilQ 的全长和/或 β-桶区域并天然展示蛋白质 在ND中(具体目标1);蛋白质-ND将与不同的佐剂组合物组合以诱导强健 和平衡的 Th1/Th2 反应,并且将评估所得血清的免疫球蛋白亚型、血清 杀菌和调理吞噬活性,以及​​与完整 Ng 的结合(具体目标 2)和 iii) 测试最多; 抗原-ND/佐剂组合有望在 Ng 下生殖道和上生殖道小鼠模型中发挥作用 感染,以及混合 Ng/Chlamydia muridarum 感染模型,因为它们能够缩短时间 外膜将极大地提高 GV CRC 的成功率。 囊泡和蛋白质组学核心(核心 B)、宿主反应监测核心(核心 C)、功能抗体 研究核心(核心 D)和小鼠免疫/挑战核心(核心 E),已完全集成到 Aims 中 2和3,用于测试抗原-ND疫苗的功效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandra Elzbieta Sikora其他文献

Aleksandra Elzbieta Sikora的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandra Elzbieta Sikora', 18)}}的其他基金

Proteomics-Driven Reverse Vaccinology for Gonorrhea
蛋白质组学驱动的淋病逆向疫苗学
  • 批准号:
    10446940
  • 财政年份:
    2022
  • 资助金额:
    $ 21.75万
  • 项目类别:
Proteomics-Driven Reverse Vaccinology for Gonorrhea
蛋白质组学驱动的淋病逆向疫苗学
  • 批准号:
    10570188
  • 财政年份:
    2022
  • 资助金额:
    $ 21.75万
  • 项目类别:
Outer Membrane Vesicles (OMVs) and Proteomics
外膜囊泡 (OMV) 和蛋白质组学
  • 批准号:
    10588236
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
Outer Membrane Vesicles (OMVs) and Proteomics
外膜囊泡 (OMV) 和蛋白质组学
  • 批准号:
    10362590
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
Nanodisc-displayed Protein Vaccines
纳米盘展示的蛋白质疫苗
  • 批准号:
    10588245
  • 财政年份:
    2019
  • 资助金额:
    $ 21.75万
  • 项目类别:
Proteomics-driven reverse vaccinology for gonorrhea.
蛋白质组学驱动的淋病反向疫苗学。
  • 批准号:
    8865005
  • 财政年份:
    2015
  • 资助金额:
    $ 21.75万
  • 项目类别:
Outer Membrane Vesicles (OMVs) and Proteomics
外膜囊泡 (OMV) 和蛋白质组学
  • 批准号:
    9900721
  • 财政年份:
  • 资助金额:
    $ 21.75万
  • 项目类别:
Nanodisc-displayed Protein Vaccines
纳米盘展示的蛋白质疫苗
  • 批准号:
    9900728
  • 财政年份:
  • 资助金额:
    $ 21.75万
  • 项目类别:

相似国自然基金

多环芳烃影响大肠杆菌抗生素耐药性进化的分子机制
  • 批准号:
    32301424
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
  • 批准号:
    82304313
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
乙醇脱氢酶AdhB介导肺炎链球菌抗生素耐药性的机制研究
  • 批准号:
    32300154
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鸭肠道菌群抗生素耐药性分布及替抗噬菌体内溶素鉴定研究
  • 批准号:
    32360830
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
消毒剂-抗生素循环压力下鲍曼不动杆菌耐药性演变及其作用机制
  • 批准号:
    82273586
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

The electrophysiology of biofilm development and drug resistance
生物膜发育和耐药性的电生理学
  • 批准号:
    10740493
  • 财政年份:
    2023
  • 资助金额:
    $ 21.75万
  • 项目类别:
A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
  • 批准号:
    10699065
  • 财政年份:
    2023
  • 资助金额:
    $ 21.75万
  • 项目类别:
An intranasal room stable vaccine formulation to prevent Pseudomonas aeruginosa (R21AI169691)
用于预防铜绿假单胞菌的鼻内室内稳定疫苗制剂 (R21AI169691)
  • 批准号:
    10741018
  • 财政年份:
    2023
  • 资助金额:
    $ 21.75万
  • 项目类别:
Elucidating bacterial responses to the novel antimicrobial AGXX
阐明细菌对新型抗菌剂 AGXX 的反应
  • 批准号:
    10742217
  • 财政年份:
    2023
  • 资助金额:
    $ 21.75万
  • 项目类别:
Targeting T3SA proteins as protective antigens against Yersinia
将 T3SA 蛋白作为针对耶尔森氏菌的保护性抗原
  • 批准号:
    10645989
  • 财政年份:
    2023
  • 资助金额:
    $ 21.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了