Development of Advanced Oligonucleotides for Glioblastoma Therapeutics

用于胶质母细胞瘤治疗的先进寡核苷酸的开发

基本信息

  • 批准号:
    10363662
  • 负责人:
  • 金额:
    $ 3.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Glioblastoma multiforme (GBM) is the most frequent and aggressive primary brain tumor in adults. Despite significant progress being made in characterizing the genetic, epigenetic, and molecular drivers of GBM, effective therapies remain limited. A considerable hurdle between GBM research and translation into efficacious treatment is the extensive infiltration and molecular heterogeneity of GBM tumors, both of which cause tumor recurrence after treatment. Consequently, the average survival expectancy for GBM patients is less than 15 months after diagnosis. For therapies to be effective in treating these lethal tumors, they must overcome both GBM infiltration and heterogeneity. Antisense oligonucleotides (ASOs) – compounds that can modulate the expression of virtually any RNA molecule – offer distinct advantages for combating GBM infiltration and heterogeneity. Following local delivery, ASOs distribute throughout the brain, a necessary feat to reach infiltrative GBM cells. Moreover, as sequence- programmable agents, ASOs possess the specificity and flexibility required to modulate expression of multiple gene targets – an effective strategy to characterize and combat GBM heterogeneity. In 2016, the ASO drug, nusinersen, was FDA approved to treat spinal muscular atrophy, establishing the clinical efficacy of ASOs in the central nervous system. However, several ASO drug candidates for GBM have failed in clinical trials due to high toxicity and low potency. Identifying potent, well-tolerated ASOs for gene modulation in brain tumors would open the door to developing effective GBM therapies. The Watts lab has developed chemically-optimized, non-toxic ASOs with enhanced distribution and potency in the brain following local CNS delivery. However, their effect on GBM is unknown. The goal of this proposal is to identify ASOs that potently and safely silence GBM drivers, and assess the impact on tumor progression and resistance in vivo. With support from Drs. Jonathan Watts (oligonucleotide chemistry), Richard Moser (neuro- oncology), Sunit Das (GBM mouse models), Manuel Garber (bioinformatics), and Michael Green (cancer biology & therapeutics), Aim 1 will test the ability of chemically-modified ASOs to silence a clinically-relevant GBM driver (ATF5), inhibit cell proliferation, and induce cell death in molecularly-distinct patient-derived GBM cell lines. Lead compounds will then be evaluated for therapeutic efficacy in a GBM mouse model by measuring ATF5 silencing, tumor growth, and mouse survival following treatment. In Aim 2, the consequences of ASO-mediated silencing on GBM tumor biology will be investigated. ASOs targeting ATF5 will be injected into GBM tumors of mice. After treatment response, residual GBM cells will be isolated for single-cell RNA sequencing to characterize the transcriptome and determine how ASO silencing perturbs functional heterogeneity. This aim will establish a rational framework for drug combinations to minimize GBM tumor resistance. Collectively, the proposed project will advance ASOs as a novel GBM therapeutic and as a tool to dissect GBM progression.
项目概要 多形性胶质母细胞瘤(GBM)是成人中最常见、最具侵袭性的原发性脑肿瘤。 在表征 GBM 的遗传、表观遗传和分子驱动因素方面取得了重大进展,有效 GBM 研究和转化为有效治疗之间存在相当大的障碍。 是GBM肿瘤的广泛浸润和分子异质性,两者都会导致肿瘤复发 治疗后,GBM 患者的平均生存期不到 15 个月。 为了有效治疗这些致命肿瘤,它们必须克服 GBM 浸润。 和异质性。 反义寡核苷酸 (ASO) – 可以调节几乎任何 RNA 分子表达的化合物 – 在本地交付后,ASO 为对抗 GBM 渗透和异质性提供了独特的优势。 分布在整个大脑中,这是到达浸润性 GBM 细胞的必要条件。 可编程代理,ASO 具有调节多种表达所需的特异性和灵活性 基因靶标——表征和对抗 GBM 异质性的有效策略 2016 年,ASO 药物, nusinersen 被 FDA 批准用于治疗脊髓性肌萎缩症,确立了 ASO 在以下领域的临床疗效: 然而,一些用于 GBM 的 ASO 候选药物由于高浓度而在临床试验中失败。 确定有效的、耐受性良好的 ASO 用于脑肿瘤基因调节将是一个新的课题。 开发有效的 GBM 疗法的大门。 Watts 实验室开发了经过化学优化的无毒 ASO,其分布和效力均得到增强 然而,它们对 GBM 的影响尚不清楚。 识别能够有效且安全地沉默 GBM 驱动因素的 ASO,并评估其对肿瘤进展和治疗的影响 在 Jonathan Watts 博士(寡核苷酸化学)、Richard Moser(神经- 肿瘤学)、Sunit Das(GBM 小鼠模型)、Manuel Garber(生物信息学)和 Michael Green(癌症生物学) 和治疗),目标 1 将测试化学修饰的 ASO 沉默临床相关 GBM 驱动因素的能力 (ATF5),在分子上不同的患者来源的 GBM 细胞系中抑制细胞增殖并诱导细胞死亡。 然后通过测量 ATF5 沉默来评估化合物在 GBM 小鼠模型中的治疗效果, 在目标 2 中,ASO 介导的沉默的后果。 将针对 ATF5 的 ASO 注射到小鼠的 GBM 肿瘤中进行研究。 治疗反应后,将分离残留的 GBM 细胞进行单细胞 RNA 测序,以表征 转录组并确定 ASO 沉默如何扰乱功能异质性。 药物组合的合理框架,以尽量减少 GBM 肿瘤耐药性。 将 ASO 作为一种新的 GBM 治疗进展和剖析 GBM 进展的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samantha Sarli其他文献

Samantha Sarli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samantha Sarli', 18)}}的其他基金

Development of Advanced Oligonucleotides for Glioblastoma Therapeutics
用于胶质母细胞瘤治疗的先进寡核苷酸的开发
  • 批准号:
    10589879
  • 财政年份:
    2021
  • 资助金额:
    $ 3.15万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Harnessing targeted IL-2 to reduce immunopathology and enhance immunity against respiratory virus infection
利用靶向 IL-2 来减少免疫病理并增强对呼吸道病毒感染的免疫力
  • 批准号:
    10334690
  • 财政年份:
    2021
  • 资助金额:
    $ 3.15万
  • 项目类别:
Development of Advanced Oligonucleotides for Glioblastoma Therapeutics
用于胶质母细胞瘤治疗的先进寡核苷酸的开发
  • 批准号:
    10589879
  • 财政年份:
    2021
  • 资助金额:
    $ 3.15万
  • 项目类别:
Comparative Modeling of Precision Breast Cancer Control Across the Translational Continuum - Supplement
跨转化连续体的乳腺癌精准控制的比较模型 - 补充
  • 批准号:
    10380482
  • 财政年份:
    2020
  • 资助金额:
    $ 3.15万
  • 项目类别:
Respiratory Virus Vaccine and Adjuvant Exploration - Equipment Supplement
呼吸道病毒疫苗及佐剂探索-设备补充
  • 批准号:
    10242434
  • 财政年份:
    2020
  • 资助金额:
    $ 3.15万
  • 项目类别:
Multimodal study of cognitive impairment following radiation therapy for locally advanced head and neck cancer
局部晚期头颈癌放射治疗后认知障碍的多模式研究
  • 批准号:
    10430157
  • 财政年份:
    2019
  • 资助金额:
    $ 3.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了