Innovative methods to reduce racial and ethnic disparities in suicide risk prediction
减少自杀风险预测中种族和民族差异的创新方法
基本信息
- 批准号:10363191
- 负责人:
- 金额:$ 41.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdultAgeAlaska NativeAlgorithmsAmerican IndiansAsian Pacific IslanderBlack PopulationsBlack raceCessation of lifeClinicalClinical DataComplexDataDeath RateDevelopmentDifferential DiagnosisEmergency department visitEnsureEthnic OriginEthnic groupEvaluationEventFundingGender IdentityHealth systemHealthcareHealthcare SystemsHispanic PopulationsIndividualLabelLeadMeasurementMeasuresMental HealthMethodsModelingModificationNational Institute of Mental HealthNot Hispanic or LatinoOutcomeOutpatientsPaperPatient CarePatientsPatternPerformancePersonsPopulationPrimary Health CareProceduresPsychiatryRaceRecordsResearchResearch PersonnelRiskRisk FactorsSample SizeSamplingSelf-Injurious BehaviorSeverity of illnessSourceStatistical MethodsStratificationSubgroupSuicideSuicide attemptSuicide preventionUnderserved PopulationUnited StatesVisitVulnerable PopulationsWeightWorkdesignhealth care availabilityhealth care service utilizationhealth care settingshealth disparityhigh riskimprovedinnovationinterestmachine learning methodmachine learning modelnoveloutcome predictionpredictive modelingpreventpreventive interventionracial and ethnicracial and ethnic disparitiesrandom forestrecidivismresponserisk predictionrisk prediction modelsexual identitysimulationsocial health determinantssuicidal behaviorsuicidal morbiditysuicidal risksuicide ratetrend
项目摘要
Suicide death rates in the United States have increased 35% since 1999. In 2018, there were over 48,000
suicide deaths, and an estimated 1.4 million adults attempted suicide. In response, health systems are
adopting suicide risk prediction models to guide delivery of suicide prevention interventions.
Suicide prediction models estimated from health care records may perpetuate current disparities in health care
access, quality, and outcomes. Suicide prediction models may not accurately identify high-risk patients from all
racial and ethnic groups. Suicide rates vary by race and ethnicity, and both the highest and lowest rates are
seen in traditionally underserved populations. Suicide rates are highest among American Indians and Alaskan
Natives (22.1 per 100,000 people) and lowest in Asian and Pacific Islander, Black, and Hispanic populations
(7.0-7.4 per 100,000 people) compared to 18.0 per 100,000 people for White non-Hispanics.
Differences in performance of suicide risk prediction models across racial and ethnic subgroups have three
possible sources. First, predictors of suicide risk may be measured with error, and this error may be different
for racial and ethnic subgroups. Second, suicide attempts and deaths may be misclassified, and
misclassification rates may differ by race and ethnicity. Third, the association between predictors and
outcomes may vary by race and ethnicity, i.e., risk modification.
Existing methods for estimating prediction models are not designed to address racial and ethnic disparities in
performance. Estimation procedures focus on optimizing performance across the entire population, not within
subgroups, and performance in less prevalent subgroups has little impact on overall accuracy. While machine
learning methods, like random forest, explore interactions between predictors and race or ethnicity, suicide
attempt and death are rare events, which limits the information available to identify race- and ethnicity-specific
risk factors. There is also insufficient guidance on sample size calculations for prediction studies.
We will develop novel statistical methods for random forest models that reduce racial and ethnic disparities in
performance of suicide prediction models by addressing gaps in current methods. Aim 1 will develop new
procedures for prediction model estimation that maximize predictive performance within racial and ethnic
subgroups, rather than maximizing average performance across the entire population. Aim 2 will integrate
methods to adjust for differential outcome misclassification in prediction model estimation and evaluation. Aim
3 will design sample size calculations to determine if a study is able to accurately predict outcomes within
racial and ethnic subgroups. We will use existing data on suicide risk factors and outcomes for 15 million
outpatient mental health, 10 million primary care, and 2 million emergency department visits from the NIMH-
funded Mental Health Research Network to implement our methods and estimate suicide prediction models for
each setting that accurately identify patients at highest risk of suicide across all races and ethnicities.
自1999年以来,美国的自杀死亡率增加了35%。2018年,自杀人数超过48,000人
自杀死亡,估计有 140 万成年人试图自杀。作为回应,卫生系统正在
采用自杀风险预测模型来指导自杀预防干预措施的实施。
根据医疗保健记录估计的自杀预测模型可能会延续当前医疗保健方面的差异
访问、质量和结果。自杀预测模型可能无法准确识别所有患者中的高危患者
种族和族裔群体。自杀率因种族和民族而异,最高和最低的自杀率均为
见于传统上服务不足的人群。美洲印第安人和阿拉斯加人的自杀率最高
本地人(每 10 万人中有 22.1 人),亚洲和太平洋岛民、黑人和西班牙裔人口中最低
(每 100,000 人 7.0-7.4),而非西班牙裔白人每 100,000 人为 18.0。
不同种族和族裔亚组的自杀风险预测模型的表现存在三个差异:
可能的来源。首先,自杀风险的预测因子的测量可能存在误差,而且这个误差可能是不同的
对于种族和民族亚群体。其次,自杀未遂和死亡可能被错误分类,并且
错误分类率可能因种族和民族而异。三、预测因子与预测因子之间的关联
结果可能因种族和民族而异,即风险调整。
现有的估计预测模型的方法并不是为了解决种族和民族差异而设计的。
表现。估计程序的重点是优化整个群体的表现,而不是内部
子组,并且不太常见的子组中的表现对整体准确性影响很小。边机
学习方法,如随机森林,探索预测因素与种族或民族、自杀之间的相互作用
企图和死亡是罕见事件,这限制了可用于识别特定种族和民族的信息
风险因素。对于预测研究的样本量计算也没有足够的指导。
我们将为随机森林模型开发新颖的统计方法,以减少种族和民族差异
通过解决当前方法的差距来提高自杀预测模型的性能。目标1将开发新的
预测模型估计的程序,可最大限度地提高种族和民族内的预测性能
子群体,而不是最大化整个群体的平均表现。目标2将整合
调整预测模型估计和评估中差异结果错误分类的方法。目的
3 将设计样本量计算以确定研究是否能够准确预测结果
种族和民族亚群体。我们将使用 1500 万人自杀风险因素和结果的现有数据
NIMH 门诊心理健康、1000 万人次初级保健和 200 万人次急诊就诊
资助心理健康研究网络来实施我们的方法并估计自杀预测模型
每个设置都能准确识别所有种族和民族中自杀风险最高的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Yates Coley其他文献
Rebecca Yates Coley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca Yates Coley', 18)}}的其他基金
Innovative methods to reduce racial and ethnic disparities in suicide risk prediction
减少自杀风险预测中种族和民族差异的创新方法
- 批准号:
10544150 - 财政年份:2022
- 资助金额:
$ 41.94万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中性粒细胞胞外诱捕网(NETs)通过AIM2炎症小体促进成人斯蒂尔病髓系细胞生成并放大细胞因子风暴的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多溴联苯醚通过肠道菌群诱导维汉成人2型糖尿病的发生及抗氧化膳食模式的拮抗作用研究
- 批准号:82160605
- 批准年份:2021
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DDX11突变通过激活P38MAPK/PI3K/Akt/CREB信号通路调控钙调蛋白结合蛋白促进成人AML复发的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
I型干扰素通过下调FOXO3介导NLRC4/NLRP3激活触发成人Still病炎症风暴的研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Vision Impairment in the National Health and Aging Trends Study: Epidemiology, Social Determinants of Health, and Adverse Late Life Outcomes
国家健康和老龄化趋势研究中的视力障碍:流行病学、健康的社会决定因素和不良的晚年结局
- 批准号:
10730418 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Beat Extreme: An Interactive, Tailored Text Messaging Program Combining Extreme Weather Alerts with Hyper-localized Resources & Actionable Insights for Addressing Climate Change
Beat Extreme:一款将极端天气警报与超本地化资源相结合的交互式定制短信程序
- 批准号:
10698887 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别:
Establishing and Mimicking Patterning Mechanisms in the Distal Nephron Tubule and Kidney Organoid
建立和模拟远端肾小管和肾类器官的模式机制
- 批准号:
10719178 - 财政年份:2023
- 资助金额:
$ 41.94万 - 项目类别: