Airway Hyper-responsiveness: from molecule to organ
气道高反应性:从分子到器官
基本信息
- 批准号:7624173
- 负责人:
- 金额:$ 23.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAddressAffinityAgonistAirway ResistanceAllergensAsthmaBehaviorBlood VesselsBreathingCaliberCell membraneCell modelCharacteristicsClinicalCollaborationsComplexComputer SimulationContractsCyclic AMPDataDiagnosisDimensionsDiseaseDoseEffectivenessEventExhibitsFiberFrequenciesFunctional disorderFutureGenerationsGoalsHeterogeneityImageInbred BALB C MiceIndividualInvestigationIsometric ExerciseKineticsKnowledgeLeadLengthLifeLinkLocationLungLung diseasesMYLK geneMeasurementMechanicsMediatingMgADPModelingMolecularMolecular ModelsMouse StrainsMusMuscle ContractionMyosin ATPaseNatureObstructive Lung DiseasesOrganOutcomeOutcome MeasurePatientsProcessProductionPumpReactionRelaxationResearchResearch PersonnelRyanodine Receptor Calcium Release ChannelRyanodine ReceptorsSignal TransductionSiteSmooth MuscleSmooth Muscle MyocytesSmooth Muscle MyosinsStimulusStructureStructure of parenchyma of lungStudy modelsSymptomsSystemSystems BiologyTakeda brand of pioglitazone hydrochlorideTestingTherapeutic InterventionTimeTissue ModelTissuesTreatment EffectivenessTreesValidationairborne allergenairway epitheliumairway hyperresponsivenessconstrictionelectric impedanceextracellularimprovedinnovationintercellular communicationmeetingsmolecular modelingmouse modelmulti-scale modelingmultidisciplinaryreceptorresearch studyrespiratory smooth muscleresponsetheories
项目摘要
DESCRIPTION (provided by applicant): Summary: Asthmatic lungs typically respond to inhaled allergens with exaggerated reductions in airway function. This phenomenon is termed airway hyper-responsiveness (AHR) and can be life threatening. AHR is not a simple reaction but is the culmination of multiple processes that manifest over a huge range of length and time scales. At one extreme, molecular signaling and interactions determine the force generated by airway smooth muscle cells (ASMCs). At the other extreme, contraction of the ASMCs is converted into a dynamic and complex constriction of branched airways that patients perceive by increased difficulty in breathing. Furthermore, asthma therapies are predominately pharmacological and operate at the molecular level, yet clinical outcomes are measured at the level of the whole lung. These two extremes are linked by numerous events operating at intermediate ranges of scale. These complex characteristics of AHR limit our understanding and ability to control asthma and will continue to confound research studies that only address responses at a single scale. Complex multi-scale systems cannot, by their very nature, be understood by studies limited to a few parameters. Consequently, this proposal will follow the innovative and alternative systems approach of developing a multi-scale experimental and computational model of AHR. We will initially determine how Ca2+ oscillations and the kinetics of cross-bridge cycling between actin and myosin molecules determine force production by ASMCs. Subsequently, we will determine how this force production distorts the airway wall and brings about airway narrowing throughout the lung. This will be achieved by the collaboration of a multidisciplinary group of investigators with experimental and mathematical expertise who will integrate our current knowledge and understanding of AHR at different cellular and tissue levels into a mathematical and computational model of AHR. The model will initially include phenomena that meet the criteria of being essential for airway contraction, of clear importance to AHR and experimentally accessible for iterative validation. In future studies, this model will be refined by the addition of relevant details. The model will be used to make specific predictions of molecular, cellular and tissue behavior and suggest critical experiments. In combination with extensive iteration between theory and experimentation, the sub-sections of the model will be refined and validated to identify the fundamental parameters that link the successive processes or scales. The results of this investigation will lead to an improved understanding of the link between the basic cellular pathophysiology and the whole lung response in asthma and other obstructive lung diseases This will improve the diagnosis of cause and effectiveness of treatment of these diseases. In addition, because AHR is clearly a complicated symptom, this investigation will evaluate the effectiveness of addressing disease with a systems biology approach. Many individuals in the USA suffer from asthma, a condition that is characterized by an exaggerated airway contraction or airway hyper-responsiveness (AHR). This response is extremely complicated being initiated at the molecular level by airborne allergens or stimuli and culminating at the organ level with difficulty in breathing. The objective of this research is to develop an understanding of this sequence of events by using a mathematical framework to guide and integrate experimental studies that elucidate the details of each process involved. With this approach, the key events in AHR can be identified and targeted for therapeutic intervention.
描述(由申请人提供): 摘要:哮喘肺通常对吸入过敏原做出反应,导致气道功能过度降低。这种现象称为气道高反应性 (AHR),可能危及生命。 AHR 不是一个简单的反应,而是在大范围的长度和时间尺度上显现的多个过程的高潮。在一种极端情况下,分子信号传导和相互作用决定了气道平滑肌细胞 (ASMC) 产生的力。在另一个极端,ASMC 的收缩转化为分支气道的动态且复杂的收缩,患者通过呼吸困难的增加来感知。此外,哮喘治疗主要是药理治疗,并在分子水平上进行,但临床结果是在整个肺水平上测量的。这两个极端是由许多中等规模的事件联系在一起的。 AHR 的这些复杂特征限制了我们控制哮喘的理解和能力,并将继续混淆仅解决单一尺度反应的研究。复杂的多尺度系统就其本质而言,无法通过仅限于几个参数的研究来理解。因此,本提案将遵循开发 AHR 多尺度实验和计算模型的创新和替代系统方法。我们将首先确定 Ca2+ 振荡以及肌动蛋白和肌球蛋白分子之间的跨桥循环动力学如何决定 ASMC 产生的力。随后,我们将确定这种力的产生如何扭曲气道壁并导致整个肺部的气道变窄。这将通过具有实验和数学专业知识的多学科研究人员小组的合作来实现,他们将把我们当前对不同细胞和组织水平的 AHR 的知识和理解整合到 AHR 的数学和计算模型中。该模型最初将包括满足气道收缩必需标准的现象,对 AHR 具有明显重要性,并且可通过实验进行迭代验证。在未来的研究中,该模型将通过添加相关细节来完善。该模型将用于对分子、细胞和组织行为进行具体预测,并提出关键实验建议。结合理论和实验之间的广泛迭代,模型的子部分将被细化和验证,以确定连接连续过程或规模的基本参数。这项研究的结果将有助于更好地了解哮喘和其他阻塞性肺疾病的基本细胞病理生理学与整个肺部反应之间的联系,这将改善这些疾病的病因诊断和治疗效果。此外,由于 AHR 显然是一种复杂的症状,因此这项研究将评估通过系统生物学方法解决疾病的有效性。在美国,许多人患有哮喘,这种疾病的特征是气道过度收缩或气道高反应性 (AHR)。这种反应极其复杂,由空气中的过敏原或刺激在分子水平上引发,并在器官水平上达到顶峰,导致呼吸困难。这项研究的目的是通过使用数学框架来指导和整合实验研究,阐明所涉及的每个过程的细节,从而加深对这一系列事件的理解。通过这种方法,可以识别 AHR 中的关键事件并有针对性地进行治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL J. SANDERSON其他文献
MICHAEL J. SANDERSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL J. SANDERSON', 18)}}的其他基金
Airway Hyper-responsiveness: from molecule to organ
气道高反应性:从分子到器官
- 批准号:
7474034 - 财政年份:2007
- 资助金额:
$ 23.83万 - 项目类别:
Airway Hyper-responsiveness: from molecule to organ
气道高反应性:从分子到器官
- 批准号:
7291449 - 财政年份:2007
- 资助金额:
$ 23.83万 - 项目类别:
Calcium signaling in airway smooth muscle in lung slices
肺切片气道平滑肌中的钙信号传导
- 批准号:
7272686 - 财政年份:2003
- 资助金额:
$ 23.83万 - 项目类别:
Calcium signaling in airway smooth muscle in lung slices
肺切片气道平滑肌中的钙信号传导
- 批准号:
6561385 - 财政年份:2003
- 资助金额:
$ 23.83万 - 项目类别:
Calcium signaling in airway smooth muscle in lung slices
肺切片气道平滑肌中的钙信号传导
- 批准号:
6734239 - 财政年份:2003
- 资助金额:
$ 23.83万 - 项目类别:
Calcium signaling in airway smooth muscle in lung slices
肺切片气道平滑肌中的钙信号传导
- 批准号:
7118660 - 财政年份:2003
- 资助金额:
$ 23.83万 - 项目类别:
Calcium signaling in airway smooth muscle in lung slices
肺切片气道平滑肌中的钙信号传导
- 批准号:
6938623 - 财政年份:2003
- 资助金额:
$ 23.83万 - 项目类别:
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Engineered tissue arrays to streamline deimmunized DMD gene therapy vectors
工程组织阵列可简化去免疫 DMD 基因治疗载体
- 批准号:
10724882 - 财政年份:2023
- 资助金额:
$ 23.83万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 23.83万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 23.83万 - 项目类别:
hiPSC Modeling of Restrictive Cardiomyopathy for Drug Testing
用于药物测试的限制性心肌病的 hiPSC 模型
- 批准号:
10716393 - 财政年份:2023
- 资助金额:
$ 23.83万 - 项目类别: