Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
基本信息
- 批准号:10357369
- 负责人:
- 金额:$ 22.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAftercareAlgorithmsBacteriaBacterial DNABenignBiological MarkersBloodBlood specimenCancer BiologyCancer EtiologyCancerousCellsCessation of lifeChemoembolizationCirrhosisColonDNADataDetectionDevelopmentDiagnosisDiseaseFloridaFoundationsGenomeGoalsHepatic MassHepatitis B VirusIncidenceLiverLiver neoplasmsMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of liverMicrobeMissionMorbidity - disease rateOutcomePatientsPopulation ControlPrimary NeoplasmPrimary carcinoma of the liver cellsPrognosisProtocols documentationPublic HealthRectal CancerResearchResearch PersonnelRoleSamplingSolidSolid NeoplasmTestingThe Cancer Genome AtlasTherapeuticTissuesTumor BurdenUniversitiesVirusalpha-Fetoproteinsbasebiobankblood treatmentblood-based biomarkercancer biomarkerscancer genomicscancer typecohortdetection methoddiagnostic biomarkerearly detection biomarkersexperimental studyfungusgenome sequencinggenomic dataimprovedmachine learning algorithmmetastatic colorectalmicrobialmicrobial communitymortalitynon-alcoholic fatty liver diseasenovel strategiespatient screeningscreeningsurveillance imagingtooltranslational impacttranslational potentialtumortumor DNAwhole genome
项目摘要
PROJECT SUMMARY/ABSTRCT
Though hepatocellular carcinoma (HCC) is the 14th most common cancer in the US,1 it is the fifth most
common cause of cancer deaths with a 5-year survival of 19.6%. The incidence of HCC in the US is rising at the
annual rate of 4.5% per year, and it is the only cancer with an increase in mortality over the last ten years.
Currently, the only method for detection of HCC is with surveillance imaging in patients with cirrhosis and alpha
fetoprotein (AFP). However, approximately 13-20% of patients diagnosed with HCC do not have cirrhosis, and
hence were never screened for the disease. In addition, AFP is normal in approximately 30-40% of patients with
HCC. Because of this, HCC is usually detected at an advanced stage, when there are a limited number of
therapeutic options. This proposal is born out of convincing preliminary data that indicate that DNA from tumor-
dwelling microbes can identify malignancies. Approximately 2.5% of reads in The Cancer Genome Atlas (TCGA)
are microbial. Machine learning algorithms using these microbial reads accurately identified solid tumors from
each other and from adjacent control tissue. Moreover, much of this accuracy is maintained when blood samples
are used instead of the tumors. This preliminary data is particularly robust for HCC.
Based on this preliminary data, the proposed studies will advance the development of a biomarker for early
detection of HCC in several ways. First, we will use the machine learning algorithms developed from TCGA on
a new cohort of samples from the University of Florida liver biobank. This biobank has nearly as many HCC
samples as the entire TCGA network. Second, the proposed studies will use more rigorous controls than what
was available in the TCGA network. This includes the use of non-HCC liver malignancies and benign tumors.
Whereas the machine learning algorithms were adequate in distinguishing HCC masses from other primary
tumors in TCGA, it's not clear whether they can distinguish HCCs from other malignant and benign masses in
the liver (e.g., metastatic colorectal cancer, hepatomas), which are more common than HCC, or the blood from
patients with HCC to those from patients with cirrhosis without HCC. Finally, the proposed studies will help
determine whether the machine learning algorithms developed from TCGA can detect whether HCC has been
treated (e.g., chemoembolization) and thus potentially serve as a tool for surveillance. Overall, these experiments
will help determine how generalizable the algorithms developed with TCGA are to independent cohorts of HCC.
These studies will lay the foundation for the development of more effective screening and surveillance protocols
that will hopefully impact the significant morbidity and mortality associated with HCC. Finally, if these studies are
successful, they would encourage the exploration of using microbial DNA as an early detection biomarker for
other types of cancers, and the role of tumor-dwelling bacteria in cancer biology.
项目概要/摘要
尽管肝细胞癌 (HCC) 是美国第 14 位最常见癌症1,但它在最常见癌症中排名第 5 位。
癌症死亡的常见原因,5 年生存率为 19.6%。美国肝癌的发病率正在上升
每年以4.5%的速度增长,它是过去十年中唯一死亡率上升的癌症。
目前,检测 HCC 的唯一方法是对肝硬化和甲型肝炎患者进行监测成像。
甲胎蛋白(AFP)。然而,大约 13-20% 诊断为 HCC 的患者没有肝硬化,并且
因此从未进行过这种疾病的筛查。此外,大约 30-40% 的 AFP 患者是正常的
肝癌。因此,HCC 通常在晚期才被检测到,此时肝癌的数量有限。
治疗选择。这项提议的诞生是基于令人信服的初步数据,这些数据表明来自肿瘤的 DNA
居住的微生物可以识别恶性肿瘤。癌症基因组图谱 (TCGA) 中约 2.5% 的读数
是微生物。使用这些微生物读数的机器学习算法可以准确识别实体瘤
彼此以及来自邻近的对照组织。此外,当血液样本
用来代替肿瘤。该初步数据对于 HCC 来说尤其可靠。
基于这些初步数据,拟议的研究将推动早期生物标志物的开发
HCC 的检测有多种方式。首先,我们将使用TCGA开发的机器学习算法
来自佛罗里达大学肝脏生物库的一组新样本。该生物样本库的 HCC 数量几乎与
样本作为整个 TCGA 网络。其次,拟议的研究将使用比现有研究更严格的控制
已在 TCGA 网络中提供。这包括使用非 HCC 肝脏恶性肿瘤和良性肿瘤。
而机器学习算法足以区分 HCC 肿块和其他原发灶
TCGA 中的肿瘤,目前尚不清楚它们是否能够将 HCC 与其他恶性和良性肿块区分开来
肝脏(例如,转移性结直肠癌、肝癌),比 HCC 更常见,或来自
患有 HCC 的患者与没有 HCC 的肝硬化患者。最后,拟议的研究将有助于
确定从 TCGA 开发的机器学习算法是否可以检测 HCC 是否已发生
治疗(例如化疗栓塞),因此有可能作为监测工具。总的来说,这些实验
将有助于确定使用 TCGA 开发的算法对独立 HCC 群体的通用性。
这些研究将为制定更有效的筛查和监测方案奠定基础
这有望影响与 HCC 相关的显着发病率和死亡率。最后,如果这些研究
如果成功,他们将鼓励探索使用微生物 DNA 作为早期检测生物标志物
其他类型的癌症,以及肿瘤内细菌在癌症生物学中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amir Zarrinpar其他文献
Amir Zarrinpar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amir Zarrinpar', 18)}}的其他基金
Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
- 批准号:
10557105 - 财政年份:2022
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Bile Salt Hydrolase in Glucose Metabolism
胆盐水解酶在葡萄糖代谢中的作用
- 批准号:
10617180 - 财政年份:2022
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Bile Salt Hydrolase in Glucose Metabolism
胆盐水解酶在葡萄糖代谢中的作用
- 批准号:
10365160 - 财政年份:2022
- 资助金额:
$ 22.16万 - 项目类别:
Engineering Native E. coli to Detect, Report, and Treat Colorectal Cancer
改造天然大肠杆菌来检测、报告和治疗结直肠癌
- 批准号:
10700076 - 财政年份:2021
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10273745 - 财政年份:2021
- 资助金额:
$ 22.16万 - 项目类别:
Engineering Native E. coli to Detect, Report, and Treat Colorectal Cancer
改造天然大肠杆菌来检测、报告和治疗结直肠癌
- 批准号:
10330342 - 财政年份:2021
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10884617 - 财政年份:2019
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10455260 - 财政年份:2019
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
10653283 - 财政年份:2019
- 资助金额:
$ 22.16万 - 项目类别:
The Role of Altered Luminal Dynamics in OSA-Induced Atherosclerosis
管腔动力学改变在 OSA 诱发的动脉粥样硬化中的作用
- 批准号:
9974574 - 财政年份:2019
- 资助金额:
$ 22.16万 - 项目类别:
相似海外基金
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 22.16万 - 项目类别:
Bacterial DNA as a Diagnostic Biomarker of Hepatocellular Carcinoma
细菌 DNA 作为肝细胞癌的诊断生物标志物
- 批准号:
10557105 - 财政年份:2022
- 资助金额:
$ 22.16万 - 项目类别:
Using High Definition transcranial Direct Current Stimulation Guided by Electrophysiology and Diffusion Tensor Imaging to Treat Verbal Retrieval Deficits Secondary to Chronic Traumatic Brain Injury
使用电生理学和扩散张量成像引导的高清经颅直流电刺激治疗继发于慢性创伤性脑损伤的言语检索缺陷
- 批准号:
10590844 - 财政年份:2022
- 资助金额:
$ 22.16万 - 项目类别:
Randomized Controlled Trial of Migraine Manager: A Digital Therapeutic Self-Management Tool for Adolescents with Migraine
偏头痛管理器的随机对照试验:偏头痛青少年的数字治疗自我管理工具
- 批准号:
10400241 - 财政年份:2020
- 资助金额:
$ 22.16万 - 项目类别:
Randomized Controlled Trial of Migraine Manager: A Digital Therapeutic Self-Management Tool for Adolescents with Migraine
偏头痛管理器的随机对照试验:偏头痛青少年的数字治疗自我管理工具
- 批准号:
10062151 - 财政年份:2020
- 资助金额:
$ 22.16万 - 项目类别: