REGULATION OF MULTIDRUG RESISTANCE IN S AUREUS
金黄色葡萄球菌多重耐药性的调控
基本信息
- 批准号:7610362
- 负责人:
- 金额:$ 5.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2008-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgarAnti-Inflammatory AgentsAnti-inflammatoryAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAreaComputer Retrieval of Information on Scientific Projects DatabaseDevelopmentDiffusionFormatesFundingGene TargetingGenesGlycolysis/Gluconeogenesis PathwayGrantGrowthInfectionInstitutionLaboratoriesMediatingMetabolismMinimum Inhibitory Concentration measurementMulti-Drug ResistanceOrganismPredispositionRegulationRegulator GenesResearchResearch PersonnelResistanceResourcesSourceStaphylococcus aureusStressTestingToxic effectUnited States National Institutes of HealthVancomycinVancomycin ResistanceVirulenceantimicrobialcellular targetingclinically relevantefflux pumpgene inductiongene repressiongluconatemethicillin resistant Staphylococcus aureusnovelpathogenresistance mechanismsalicylate
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
Our laboratory investigates the intrinsic antimicrobial resistance mechanisms of the Gram-positive pathogen Staphylococcus aureus. The first area of research our laboratory investigates is the involvement of the staphylococcal accessory regulator (sarA) with intrinsic and clinically relevant antibiotic resistance mechanisms. The sarA locus was initially described as a virulence gene regulator. We have demonstrated that sarA is required for the full expression of intrinsic resistance to multiple structurally and mechanistically unique antimicrobials. In addition, this sarA-mediated mechanism controls antimicrobial accumulation. Vancomycin-intermediate S. aureus appeared in 1997 and are a threat to the last stand anti-staphylococcal agent vancomycin. Vancomycin is particularly important for the treatment of infections caused by methicillin-resistant S. aureus, which in general are multiply antibiotic-resistant. We have demonstrated that sarA inactivation in three unrelated sets of VISA strains increased vancomycin susceptibility as revealed by decreased: agar diffusion minimum inhibitory concentrations (MIC); E-test MICs; distances grown on vancomycin gradients; and high-level vancomycin-resistant colonies detected. The second area investigated is the salicylate-induced multiple antimicrobial resistance mechanism of Staphylococcus aureus. Growth of S. aureus with the nonsteroidal anti-inflammatory salicylate reduces susceptibility of this organism to multiple antimicrobials that are structurally and mechanistically unique. Growth of S. aureus with salicylate leads to the induction of genes involved with gluconate and formate metabolism and repression of genes required for gluconeogenesis and glycolysis. In addition, salicylate induction upregulates two antibiotic target genes and downregulates a multidrug efflux pump gene repressor (mgrA) and sarR, which represses a gene (sarA) important for antimicrobial resistance. We hypothesize that these salicylate-induced alterations jointly represent a unique mechanism that allows S. aureus to resist antimicrobial stress and toxicity. Collectively both areas of research have identified potential cellular targets for the development of novel anti-staphylococcal agents.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目和
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
中心,不一定是研究者的机构。
我们的实验室研究革兰氏阳性病原体金黄色葡萄球菌的内在抗菌机制。我们实验室研究的第一个研究领域是葡萄球菌辅助调节因子 (sarA) 与内在和临床相关的抗生素耐药机制的关系。 sarA 基因座最初被描述为毒力基因调节因子。我们已经证明,sarA 是充分表达对多种结构和机制独特的抗菌药物的内在耐药性所必需的。此外,这种 sarA 介导的机制控制抗菌药物的积累。万古霉素中间体金黄色葡萄球菌于 1997 年出现,对最后的抗葡萄球菌药物万古霉素构成威胁。万古霉素对于治疗耐甲氧西林金黄色葡萄球菌引起的感染特别重要,这些感染通常具有多种抗生素耐药性。我们已经证明,三组不相关的 VISA 菌株中 sarA 失活会增加万古霉素敏感性,具体表现为: 琼脂扩散最小抑制浓度 (MIC);电子测试 MIC;万古霉素梯度上生长的距离;并检测到高水平的万古霉素耐药菌落。研究的第二个领域是水杨酸盐诱导的金黄色葡萄球菌多重耐药机制。金黄色葡萄球菌与非甾体抗炎水杨酸盐的生长降低了该生物体对结构和机制独特的多种抗菌剂的敏感性。金黄色葡萄球菌与水杨酸盐的生长导致与葡萄糖酸和甲酸盐代谢相关的基因的诱导以及糖异生和糖酵解所需的基因的抑制。此外,水杨酸盐诱导上调两个抗生素靶基因并下调多药外排泵基因阻遏物(mgrA)和sarR,后者抑制对抗菌素耐药性重要的基因(sarA)。我们假设这些水杨酸盐诱导的改变共同代表了一种独特的机制,使金黄色葡萄球菌能够抵抗抗菌应激和毒性。两个研究领域共同确定了开发新型抗葡萄球菌药物的潜在细胞靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN E GUSTAFSON其他文献
JOHN E GUSTAFSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN E GUSTAFSON', 18)}}的其他基金
FASTER IDENTIFICATION OF EPIDEMIC BACTERIAL PATHOGENS ON THE US-MEXICAN BORDER
更快地识别美墨边境的流行性细菌病原体
- 批准号:
8361755 - 财政年份:2011
- 资助金额:
$ 5.23万 - 项目类别:
FASTER IDENTIFICATION OF EPIDEMIC BACTERIAL PATHOGENS ON THE US-MEXICAN BORDER
更快地识别美墨边境的流行性细菌病原体
- 批准号:
8169391 - 财政年份:2010
- 资助金额:
$ 5.23万 - 项目类别:
FASTER IDENTIFICATION OF EPIDEMIC BACTERIAL PATHOGENS ON THE US-MEXICAN BORDER
更快地识别美墨边境的流行性细菌病原体
- 批准号:
7956773 - 财政年份:2009
- 资助金额:
$ 5.23万 - 项目类别:
REGULATION OF MULTIDRUG RESISTANCE IN S AUREUS
金黄色葡萄球菌多重耐药性的调控
- 批准号:
7960226 - 财政年份:2009
- 资助金额:
$ 5.23万 - 项目类别:
REGULATION OF MULTIDRUG RESISTANCE IN S AUREUS
金黄色葡萄球菌多重耐药性的调控
- 批准号:
7720451 - 财政年份:2008
- 资助金额:
$ 5.23万 - 项目类别:
FASTER IDENTIFICATION OF EPIDEMIC BACTERIAL PATHOGENS ON THE US-MEXICAN BORDER
更快地识别美墨边境的流行性细菌病原体
- 批准号:
7724247 - 财政年份:2008
- 资助金额:
$ 5.23万 - 项目类别:
相似国自然基金
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ZAP-70选择性共价抑制剂及降解剂的设计合成和抗炎活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片段的P2Y14受体拮抗剂的设计、合成和抗炎活性研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
两种民族药用植物中黄酮类ILCreg诱导剂的发现及其抗炎性肠病机制探究
- 批准号:81960777
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Prevention of skin cancer by phytochemicals via Nrf2 and epigenetics
通过 Nrf2 和表观遗传学使用植物化学物质预防皮肤癌
- 批准号:
9207083 - 财政年份:2016
- 资助金额:
$ 5.23万 - 项目类别:
Peptide-Modified Sulfonated Styrene Block Copolymers for Vascular Applications
用于血管应用的肽改性磺化苯乙烯嵌段共聚物
- 批准号:
7393608 - 财政年份:2008
- 资助金额:
$ 5.23万 - 项目类别:
Airway Epithelial Adaptation to Infectious Stimuli
气道上皮对感染刺激的适应
- 批准号:
7214764 - 财政年份:2005
- 资助金额:
$ 5.23万 - 项目类别:
Airway Epithelial Adaptation to Infectious Stimuli
气道上皮对感染刺激的适应
- 批准号:
7392300 - 财政年份:2005
- 资助金额:
$ 5.23万 - 项目类别:
Peroxisome Proliferator Activated Receptors in Lung Cancer
肺癌中的过氧化物酶体增殖物激活受体
- 批准号:
7409657 - 财政年份:2004
- 资助金额:
$ 5.23万 - 项目类别: