Understanding the control mechanisms of 3D cell migration from new dimensions
从新维度理解3D细胞迁移的控制机制
基本信息
- 批准号:10197977
- 负责人:
- 金额:$ 35.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnisotropyAreaCellsChemicalsCollagenComputer ModelsCrosslinkerCuesDNADNA SequenceDevelopmentDimensionsDisease ProgressionEngineeringEnvironmentEpithelialExhibitsExtracellular MatrixFoundationsGoalsHuman BiologyImageImmune System DiseasesKnowledgeLabelLeadLifeLightMalignant NeoplasmsMarkov ChainsMeasuresMechanicsMesenchymalMolecularNeoplasm MetastasisOrganoidsPatternPeriodicityPhysicsPhysiological ProcessesRegulationResearchRoleStimulusStressTechniquesTestingTherapeuticTimeTissue EngineeringTissuesbasecancer therapycell motilitycell typedeep learningdesigndigitalfascinategenetically modified cellsin vivomigrationnanoparticleprogramsprotein protein interactionresponsesynergismtissue regenerationtranscription factor
项目摘要
Cell migration in 3D tissue space is of fundamental importance for human biology. However, predicting and
programming 3D cell motility remain as major challenges despite of a firm picture of the molecular machineries
involved. To fill the knowledge gap between the overwhelming subcellular details such as protein-protein
interactions, and the fascinating dynamic patterns exhibited by different cell types in tissue spaces, I will focus
on the mesoscale cellular dynamics, namely the migration mode transitions of cells in 3D extracellular matrix
(ECM). My lab has developed deep-learning based image postprocessing to track the migration modes of cells.
We also developed techniques to manipulate and measure the micromechanics of ECM at cellular scale. Based
on these preliminary results, I will systematically study the intrinsic and extrinsic control mechanisms of 3D cell
migration mode transitions in collagen ECM. The results will pave the way for my long-term goals to understand
the organizing principle that lead molecules to life, and to program cell motility for applications in tissue
engineering and cancer treatment. To this end, I will dedicate my lab to the following research thrusts. Thrust 1
aims to determine how cell migration mode transitions are regulated by external cues, as well as intrinsic states
of cells during the Epithelial-Mesenchymal Transition (EMT). I will test three hypotheses that elucidate the roles
of ECM micromechanical stiffness, anisotropy, plasticity, synergy of mechanical and chemical guidance, as well
as EMT stage in modulating the cell migration mode transitions. I will employ sophisticated ECM engineering
and characterization techniques developed in my lab. I will also use genetically engineered cells whose EMT
transcription factors are fluorescent labeled and can be specifically activated. Completion of thrust 1 will establish
3D cell migration as a hidden Markov process where the mesoscale dynamics, namely the migration mode
transitions, provides a unifying framework to explain diverse dynamic patterns of 3D cell migration observed in
vivo. Thrust 2 aims to devise strategies to program cell migration via nonstationary mechanical cues. In
subproject 1, I will employ techniques developed in my lab to control 3D contact guidance cues in space and in
real time. By measuring the migration mode transitions under step-increasing contact guidance, I will obtain the
energy barriers that separate different modes. Then under periodic mechanical stimuli I will measure and
computationally model the nonequilibrium mode transition flux, a statistical physics quantity that inform the
efficiency and energy dissipation of cell motility responses. These mesoscale quantities shed light to the
underlying molecular organizing principles. In subproject 2 I will develop collagen ECM which exhibits digital
response to stresses using DNA-grafted nanoparticles as crosslinkers. I will design the DNA sequence to control
the yield strength of crosslinkers, thereby programing cell migration mode both for single cell and for collective
organoid migration. Completion of thrust 2 will expands the design space of engineered ECM, laying a foundation
for the mechanical programing of 3D cell motility.
3D 组织空间中的细胞迁移对于人类生物学至关重要。然而,预测和
尽管对分子机器有了清晰的认识,但对 3D 细胞运动进行编程仍然是主要挑战
涉及。填补蛋白质-蛋白质等压倒性亚细胞细节之间的知识空白
相互作用,以及组织空间中不同细胞类型表现出的迷人动态模式,我将重点关注
介观尺度细胞动力学,即细胞在 3D 细胞外基质中的迁移模式转变
(ECM)。我的实验室开发了基于深度学习的图像后处理来跟踪细胞的迁移模式。
我们还开发了在细胞尺度上操纵和测量 ECM 微观力学的技术。基于
基于这些初步结果,我将系统地研究3D细胞的内在和外在控制机制
胶原蛋白 ECM 中的迁移模式转变。结果将为我理解长期目标铺平道路
导致分子产生生命并编程细胞运动以应用于组织的组织原理
工程和癌症治疗。为此,我将把我的实验室致力于以下研究方向。推力1
旨在确定细胞迁移模式转变如何受到外部线索以及内在状态的调节
上皮-间质转化(EMT)期间的细胞。我将测试三个假设来阐明角色
ECM 微机械刚度、各向异性、塑性、机械和化学引导的协同作用,以及
作为调节细胞迁移模式转变的EMT阶段。我将采用先进的 ECM 工程
和我的实验室开发的表征技术。我还将使用其 EMT 的基因工程细胞
转录因子带有荧光标记,可以被特异性激活。完成主旨 1 将建立
3D细胞迁移作为隐马尔可夫过程,其中介尺度动力学,即迁移模式
转变,提供了一个统一的框架来解释观察到的 3D 细胞迁移的不同动态模式
体内。 Thrust 2 旨在设计通过非平稳机械信号来编程细胞迁移的策略。在
子项目 1,我将采用我的实验室开发的技术来控制空间和空间中的 3D 接触引导线索
即时的。通过测量逐步增加的接触引导下的迁移模式转换,我将获得
分隔不同模式的能量屏障。然后在周期性的机械刺激下我将测量并
对非平衡模式跃迁通量进行计算建模,这是一个统计物理量,可告知
细胞运动反应的效率和能量耗散。这些介尺度量揭示了
基本的分子组织原理。在子项目 2 中,我将开发胶原蛋白 ECM,它展示数字化
使用 DNA 接枝纳米颗粒作为交联剂来响应应力。我会设计DNA序列来控制
交联剂的屈服强度,从而对单细胞和集体的细胞迁移模式进行编程
类器官迁移。推力2的完成将扩大工程ECM的设计空间,奠定基础
用于 3D 细胞运动的机械编程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Sun其他文献
Bo Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Sun', 18)}}的其他基金
Understanding the control mechanisms of 3D cell migration from new dimensions
从新维度理解3D细胞迁移的控制机制
- 批准号:
10396576 - 财政年份:2020
- 资助金额:
$ 35.25万 - 项目类别:
Understanding the control mechanisms of 3D cell migration from new dimensions
从新维度理解3D细胞迁移的控制机制
- 批准号:
10627783 - 财政年份:2020
- 资助金额:
$ 35.25万 - 项目类别:
Understanding the control mechanisms of 3D cell migration from new dimensions
从新维度理解3D细胞迁移的控制机制
- 批准号:
10029282 - 财政年份:2020
- 资助金额:
$ 35.25万 - 项目类别:
Understanding the control mechanisms of 3D cell migration from new dimensions
从新维度理解3D细胞迁移的控制机制
- 批准号:
10579538 - 财政年份:2020
- 资助金额:
$ 35.25万 - 项目类别:
相似国自然基金
横贯南极山脉和南极大裂谷区域的地震各向异性研究
- 批准号:41674100
- 批准年份:2016
- 资助金额:68.0 万元
- 项目类别:面上项目
天山造山带及周边区域地壳上地幔面波各向异性研究
- 批准号:41574057
- 批准年份:2015
- 资助金额:70.0 万元
- 项目类别:面上项目
RHIC到LHC能区重离子碰撞中大横动量区域各向异性的研究
- 批准号:11347005
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
青藏高原东南部区域下地壳流以及上地幔形变的地震学研究
- 批准号:41274099
- 批准年份:2012
- 资助金额:120.0 万元
- 项目类别:面上项目
青藏高原东缘及周边区域岩石圈各向异性和变形特征研究
- 批准号:41274093
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10340194 - 财政年份:2022
- 资助金额:
$ 35.25万 - 项目类别:
Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
- 批准号:
10538239 - 财政年份:2022
- 资助金额:
$ 35.25万 - 项目类别:
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
- 批准号:
10596518 - 财政年份:2022
- 资助金额:
$ 35.25万 - 项目类别:
Understanding the multiscale basis of solute transport in the cartilage endplate
了解软骨终板中溶质转运的多尺度基础
- 批准号:
10701756 - 财政年份:2022
- 资助金额:
$ 35.25万 - 项目类别:
Application of Advanced Quantitative Methods to Schizophrenia Research
先进定量方法在精神分裂症研究中的应用
- 批准号:
10541252 - 财政年份:2021
- 资助金额:
$ 35.25万 - 项目类别: