Identification of outcome-based sub-populations using deep phenotyping and precision functional mapping across ADHD and ASD
使用 ADHD 和 ASD 的深度表型分析和精确功能图谱识别基于结果的亚群
基本信息
- 批准号:10181076
- 负责人:
- 金额:$ 115.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-06 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdolescentAdultAffectAlgorithmsAmygdaloid structureAngerAnxietyAttention deficit hyperactivity disorderBehaviorBehavioralBiologicalBiological MarkersBrainCategoriesChildChild PsychiatryChildhoodClinicalCommunitiesComplementComplexComputational ScienceDataData SetDetectionDevelopmentDiagnosisDiagnosticDimensionsDiseaseEtiologyFrightFunctional Magnetic Resonance ImagingFunctional disorderFutureGeneticGraphHeterogeneityHybridsImaging TechniquesIndividualIndividual DifferencesInvestigationKnowledgeMachine LearningMagnetic Resonance ImagingMapsMeasuresMental disordersMethodsModelingMonitorMorbidity - disease rateMotionMovementMyelinNational Institute of Mental HealthNatureNegative ValenceNeurobiologyNeurodevelopmental DisorderOutcomeOutputParticipantPatientsPediatricsPhenotypePhysiologyPopulationPreventionProceduresPsychiatryPsychopathologyPublishingResearchResearch Domain CriteriaResearch PersonnelRestRetinal blind spotSample SizeSamplingScanningSignal TransductionSiteSpecificitySupervisionSymptomsSystemTestingTherapeuticTimeTranslatingTranslationsVariantWorkYouthautism spectrum disorderbasebehavioral studybrain behaviorclinical careclinical heterogeneityclinical practicecognitive controlcognitive developmentcohortcomputerized toolscostdesigndisorder subtypegray matterimprovedindividual patientinnovationinterestmachine learning methodmortalitynetwork architectureneuroimagingnext generationnovelparent grantpediatric patientspersonalized diagnosticsrandom forestsymptomatologytreatment stratificationtreatment trialunsupervised learning
项目摘要
Project Summary
Two of the earliest onset, most common, and costly neurodevelopmental disorders in child psychiatry
are Attention Deficit Hyperactivity Disorder (ADHD) and Autism spectrum disorders (ASD). The clinical
heterogeneity and the imprecise nature of their nosological distinctions represents a fundamentally
confounding factor limiting a better understanding of their etiology, prevention, and treatment. In short, simple
design assumptions regarding `homogeneity in samples' in typical and atypical populations may explain the
frequently very small effect sizes in psychopathology research. Clinically, these same assumptions may
account for why treatments often have weak or unpredictable effects.
Recent developments in the computational sciences, have enabled the implementation of models
sufficiently complex to address the aforementioned situation regarding subpopulations; however, very few tie
the outputs to the specific outcome or questions being asked by the investigator. Under the parent grant, we
developed and published a novel hybrid supervised/unsupervised machine learning method to characterize
biologically relevant heterogeneity in ADHD and/or ASD – the Functional Random Forest (FRF). The hybrid
FRF combines machine learning and graph theoretic analyses in order to identify population subtypes related
to the clinically most important outcomes (in the case, of this proposal, negative valence symptoms) trans-
diagnostically (ASD, ADHD, TD).
Despite developing the FRF, subtyping results using functional MRI (fMRI) signals have lagged behind
the subtyping of behavioral profiles. In addition, they have yet to become sufficiently sensitive and specific, for
rapid translation into clinical practice. Fortunately, parallel advances in functional neuroimaging, allow for
precision functional mapping of individuals, and can be synergistically combined with the FRF to greatly boost
our ability to subtype and characterize individual patients from fMRI data. Here we combine the FRF with
precision mapping to reveal common variants and individual specificity in global brain organization. The
proposed individual-specific precision mapping moves beyond group averaging approaches, which are
obscuring important inter-individual differences related to distinct pathophysiologies underlying negative
valence across diagnoses (ADHD, ASD, TD).
Thus, the current proposal aims to apply FRF algorithms to trans-diagnostic (TD, ASD, ADHD)
behavioral and precision functional mapping RSFC data to identify distinct sub-populations across ASD,
ADHD, and TD that relate to negative valence symptom dimensions.
项目概要
儿童精神病学中最早发病、最常见且代价高昂的两种神经发育障碍
临床上有注意力缺陷多动障碍(ADHD)和自闭症谱系障碍(ASD)。
异质性及其分类学区别的不精确本质代表了一种根本性的
混杂因素限制了对其病因、预防和治疗的更好理解。
关于典型和非典型人群中“样本同质性”的设计假设可以解释
在临床上,这些相同的假设可能会产生非常小的影响。
解释为什么治疗通常效果较弱或不可预测。
计算科学的最新发展使得模型的实现成为可能
然而,很少有领带
根据家长资助,我们将输出具体结果或提出的问题。
开发并发布了一种新颖的混合监督/无监督机器学习方法来表征
ADHD 和/或 ASD 中的生物学相关异质性——功能随机森林 (FRF)。
FRF 结合了机器学习和图论分析,以识别相关的人群亚型
到临床上最重要的结果(在本提议的情况下,负价症状)反式
诊断(ASD、ADHD、TD)。
尽管开发了 FRF,但使用功能 MRI (fMRI) 信号的子类型结果仍然落后
此外,它们还没有变得足够敏感和具体。
幸运的是,功能神经影像学的并行进展使得这一技术得以快速转化为临床实践。
精准的个体功能映射,并可与FRF协同结合,大幅提升
我们能够根据功能磁共振成像数据对个体患者进行分类和表征。在这里,我们将 FRF 与 FRF 结合起来。
精确绘图以揭示全球大脑组织中的常见变异和个体特异性。
所提出的个体特定的精确映射超越了组平均方法,这些方法是
模糊了与负面影响背后的不同病理生理学相关的重要个体差异
跨诊断的效价(ADHD、ASD、TD)。
因此,当前的提案旨在将 FRF 算法应用于跨诊断(TD、ASD、ADHD)
行为和精确功能映射 RSFC 数据,以识别跨 ASD 的不同亚群,
ADHD 和 TD 与负价症状维度相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nico Dosenbach其他文献
Nico Dosenbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nico Dosenbach', 18)}}的其他基金
Functional Connectivity, Brain Development, and Outcomes in Chiari Type I Malformation
Chiari I 型畸形的功能连接、大脑发育和结果
- 批准号:
10629122 - 财政年份:2023
- 资助金额:
$ 115.71万 - 项目类别:
PEDIATRIC BRAIN INJURY RECOVERY VIA USE-DRIVEN FUNCTIONAL NETWORK REORGANIZATION
通过使用驱动的功能网络重组实现小儿脑损伤康复
- 批准号:
9244075 - 财政年份:2015
- 资助金额:
$ 115.71万 - 项目类别:
PEDIATRIC BRAIN INJURY RECOVERY VIA USE-DRIVEN FUNCTIONAL NETWORK REORGANIZATION
通过使用驱动的功能网络重组实现小儿脑损伤康复
- 批准号:
8996726 - 财政年份:2015
- 资助金额:
$ 115.71万 - 项目类别:
Identification of outcome-based sub-populations using deep phenotyping and precision functional mapping across ADHD and ASD
使用 ADHD 和 ASD 的深度表型分析和精确功能图谱识别基于结果的亚群
- 批准号:
10600093 - 财政年份:2012
- 资助金额:
$ 115.71万 - 项目类别:
Identification of outcome-based sub-populations using deep phenotyping and precision functional mapping across ADHD and ASD
使用 ADHD 和 ASD 的深度表型分析和精确功能图谱识别基于结果的亚群
- 批准号:
10402304 - 财政年份:2012
- 资助金额:
$ 115.71万 - 项目类别:
相似国自然基金
青少年焦虑的预测和干预:基于跨通道恐惧泛化视角
- 批准号:32300928
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
推拿“舒筋调骨”干预青少年脊柱侧弯“肌肉力学-椎间载荷”平衡机制研究
- 批准号:82374607
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于数字表型青少年自杀行为转化风险测度及虚拟现实矫正干预研究
- 批准号:72304244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视屏活动和CaMKII m6A甲基化修饰影响青少年抑郁症状的纵向研究
- 批准号:82304168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年创伤后应激与情绪问题:多模态机制与多维干预效果探究
- 批准号:32371139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 115.71万 - 项目类别:
Early Life Stress Induced Mechanisms of Cardiovascular Disease Risk and Resilience
生命早期压力诱发心血管疾病风险和恢复力的机制
- 批准号:
10555121 - 财政年份:2023
- 资助金额:
$ 115.71万 - 项目类别:
Addressing Weight Bias Internalization to Improve Adolescent Weight Management Outcomes
解决体重偏差内在化问题,改善青少年体重管理成果
- 批准号:
10642307 - 财政年份:2023
- 资助金额:
$ 115.71万 - 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 115.71万 - 项目类别: