Mechanisms of neural circuit dynamics in working memory anddecision-making
工作记忆和决策中的神经回路动力学机制
基本信息
- 批准号:9983177
- 负责人:
- 金额:$ 306.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-28 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAlzheimer&aposs DiseaseAnatomyAnimalsAreaAtlasesAttention deficit hyperactivity disorderAutomationBackBasic ScienceBehaviorBehavioralBiological AssayBiophysicsBipolar DepressionBrainBrain regionCalciumCerebellumCodeCognitionCollaborationsComplexComputing MethodologiesDataData ScienceData SetDecision MakingDementiaDiseaseDorsalElectrophysiology (science)Experimental DesignsGoalsHuman ResourcesImageIndividualLocationMachine LearningMapsMethodsMicroscopyMindModelingMolecular ProbesMonitorNeuronsOpticsPathway interactionsPhysiologic pulsePhysiologicalPopulationProcessPsyche structureQuality ControlResearchResearch PersonnelResearch Project GrantsResearch SupportResolutionResourcesRodentRunningSchizophreniaSensoryShort-Term MemoryStatistical Data InterpretationStatistical MethodsSystemTechniquesTechnologyTestingTherapeuticTrainingVentral Tegmental AreaWorkautism spectrum disorderbasecell typecognitive abilitycognitive processcost effectivenessdata to knowledgedesignexperimental studyimaging modalityimprovedinformation processinginstrumentationlarge scale datamembernetwork modelsneural circuitneuromechanismnew technologyoptogeneticsreconstructionrelating to nervous systemscale upsocial computingtooltwo-photonvirtualvirtual reality
项目摘要
Project Summary
Working memory, the ability to temporarily hold multiple pieces of information in mind for manipulation, is
central to virtually all cognitive abilities. Recent technical advances have opened an unprecedented
opportunity to comprehensively dissect the neural circuit mechanisms of this ability across multiple brain
areas. The task to be studied is a common form of decision-making that is based on the gradual
accumulation of sensory evidence and thus relies on working memory. A team of leading experts propose to
investigate the neural basis of this behavior using the latest techniques, including virtual reality,
high-throughput automated behavioral training, large-scale cellular-resolution imaging in behaving rodents,
manipulation of neural activity in specific brain areas and cell types, and automated anatomical
reconstruction. In particular, the researchers will identify key brain regions that are required for this decision
task through systematic, temporally specific inactivations via optogenetics technology, across all of dorsal
cortex and in key subcortical areas, and use quantitative model-fitting to evaluate the effects. They will use
state-of-the-art two-photon calcium imaging methods and electrophysiology to characterize the information
flow in many individual neurons within these brain areas during the task. In addition, they will use
cutting-edge anatomical reconstructions and new functional connectivity methods, within and across brain
regions, to evaluate the interactions of these physiologically characterized neurons. The long-term goal of
this project is to arrive at a complete, brain-wide understanding of the cellular and circuit mechanisms of
activity dynamics related to working memory. Finally, they will use sophisticated computational methods to
incorporate this new understanding into a realistic circuit model that will support a tightly integrated
process of model-guided experimental design, in which the model suggests the most informative
experiments and their results are then fed back to improve the model’s fidelity. This process is expected to
produce the most accurate and detailed multi-brain-region biophysical circuit model of a cognitive process
in existence. In addition, the proposed research will enable researchers to generate and test a variety of
hypotheses about the neural basis of evidence accumulation, working memory, and decision-making.
Taken together, these achievements will represent a crucial step toward a mechanistic understanding of how
the brain works with information.
项目概要
工作记忆是指暂时记住多条信息以进行操作的能力
几乎所有认知能力的核心最近的技术进步开启了前所未有的局面。
有机会全面剖析这种能力跨多个大脑的神经回路机制
要研究的任务是基于渐进的决策的常见形式。
感官证据的积累,从而依赖工作记忆,一个由领先专家组成的团队建议:
使用最新技术(包括虚拟现实)研究这种行为的神经基础,
高通量自动化行为训练、行为啮齿类动物的大规模细胞分辨率成像、
操纵特定大脑区域和细胞类型的神经活动,以及自动解剖
特别是,研究人员将确定这一决定所需的关键大脑区域。
通过光遗传学技术,在整个背侧进行系统的、暂时的特定失活来完成任务
他们将使用定量模型拟合来评估效果。
最先进的双光子钙成像方法和电生理学来表征信息
在执行任务期间,这些大脑区域内的许多单个神经元都会流动。
大脑内部和大脑之间的尖端解剖重建和新的功能连接方法
区域,以评估这些生理特征神经元的相互作用。
该项目旨在对大脑的细胞和电路机制有一个完整的、全脑的理解。
最后,他们将使用复杂的计算方法来研究与工作记忆相关的活动动态。
将这种新的理解融入到一个现实的电路模型中,该模型将支持紧密集成的
模型引导的实验设计过程,其中模型提供了最丰富的信息
然后反馈实验及其结果以提高模型的保真度。
产生认知过程的最准确和详细的多脑区域生物物理回路模型
此外,拟议的研究将使研究人员能够生成和测试各种。
关于证据积累、工作记忆和决策的神经基础的假设。
总而言之,这些成就将代表着朝着机械地理解如何实现这一目标迈出了关键的一步。
大脑处理信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos D Brody其他文献
A cognitive process model captures near-optimal confidence-guided waiting in rats
认知过程模型捕获了大鼠近乎最佳的信心引导等待
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Tyler Boyd;Alex T. Piet;Chuck D Kopec;Carlos D Brody - 通讯作者:
Carlos D Brody
Author Correction: Dorsal hippocampus contributes to model-based planning
作者更正:背侧海马有助于基于模型的规划
- DOI:
10.1038/s41593-017-0026-8 - 发表时间:
2017-11-07 - 期刊:
- 影响因子:25
- 作者:
Kevin J Miller;Matthew M. Botvinick;Carlos D Brody - 通讯作者:
Carlos D Brody
Dynamic reinforcement learning reveals time-dependent shifts in strategy during reward learning
动态强化学习揭示了奖励学习期间策略的时间依赖性变化
- DOI:
10.1101/2024.02.28.582617 - 发表时间:
2024-03-05 - 期刊:
- 影响因子:0
- 作者:
S. Venditto;Kevin J Miller;Carlos D Brody;N. D. Daw - 通讯作者:
N. D. Daw
From predictive models to cognitive models: Separable behavioral processes underlying reward learning in the rat
从预测模型到认知模型:大鼠奖励学习的可分离行为过程
- DOI:
10.1038/s41562-020-0929-3 - 发表时间:
2021 - 期刊:
- 影响因子:29.9
- 作者:
Kevin J Miller;Matthew M. Botvinick;Carlos D Brody - 通讯作者:
Carlos D Brody
Princeton RAtlas: A Common Coordinate Framework for Fully cleared, Whole Rattus norvegicus Brains
普林斯顿 RAtlas:完全清晰的整个褐家鼠大脑的通用坐标框架
- DOI:
10.21769/bioprotoc.4854 - 发表时间:
2023-10-20 - 期刊:
- 影响因子:0.8
- 作者:
Emily Dennis;Peter Bibawi;Zahra M. Dhanerawala;Laura A. Lynch;Samuel S.;Carlos D Brody - 通讯作者:
Carlos D Brody
Carlos D Brody的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos D Brody', 18)}}的其他基金
P2: Geometry of Neural Representations and Dynamics
P2:神经表征和动力学的几何
- 批准号:
10705964 - 财政年份:2023
- 资助金额:
$ 306.24万 - 项目类别:
Mechanisms of neural circuit dynamics in working memory and decision-making
工作记忆和决策中的神经回路动力学机制
- 批准号:
10705962 - 财政年份:2023
- 资助金额:
$ 306.24万 - 项目类别:
An experimental platform to investigate the neural mechanisms underlying flexible decision-making
研究灵活决策神经机制的实验平台
- 批准号:
10366077 - 财政年份:2021
- 资助金额:
$ 306.24万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Earlier-Life Predictors of Midlife Risk Factors for Dementia: A 35-Year Follow-up
中年痴呆症风险因素的早期预测因素:35 年随访
- 批准号:
10596295 - 财政年份:2023
- 资助金额:
$ 306.24万 - 项目类别:
Pain and Nutrition in Dementia and Alzheimers PANDA
痴呆症和阿尔茨海默病的疼痛和营养 PANDA
- 批准号:
10644355 - 财政年份:2023
- 资助金额:
$ 306.24万 - 项目类别:
Identifying barriers to optimizing data sharing and accelerate discovery in Alzheimer’s disease and related dementia research
识别优化数据共享和加速阿尔茨海默病及相关痴呆症研究发现的障碍
- 批准号:
10568214 - 财政年份:2023
- 资助金额:
$ 306.24万 - 项目类别:
A Novel Technology to Disseminate WOOP (Wish, Outcome, Obstacle, Plan) to Dementia Caregivers
向痴呆症护理人员传播 WOOP(愿望、结果、障碍、计划)的新技术
- 批准号:
10760438 - 财政年份:2023
- 资助金额:
$ 306.24万 - 项目类别: