A protein traffic control system that regulates left-right patterning and heart development
调节左右模式和心脏发育的蛋白质交通控制系统
基本信息
- 批准号:10181808
- 负责人:
- 金额:$ 75.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAllelesAnatomyAttenuatedBiochemicalBiological AssayBirthBlood VesselsCRISPR screenCardiac developmentCell CommunicationCell surfaceCellsCharacteristicsClustered Regularly Interspaced Short Palindromic RepeatsCodeComplexCongenital AbnormalityCongenital Heart DefectsDataDefectDevelopmentDiagnosticDouble Outlet Right VentricleEmbryoErinaceidaeFaceFoundationsFunctional disorderGenesGeneticGenetic Predisposition to DiseaseHeartHeart AbnormalitiesHumanHuman GeneticsInheritance PatternsIntegral Membrane ProteinLeftLifeLigandsLimb structureLinkLive BirthMembraneMembrane ProteinsModelingMolecularMorbidity - disease rateMorphogenesisMusMutationOperative Surgical ProceduresOrganOutcomePathogenicityPathway interactionsPatientsPatternPenetrancePharmacologyPhenocopyPlayProceduresProteinsProteomicsReceptor SignalingRegistriesResearch PersonnelRoleSideSignal TransductionSitus InversusSkeletonStructural Congenital AnomaliesSyndromeSystemTestingTherapeuticTissuesTransducersTransposition of Great VesselsUbiquitinationUnited StatesVariantVisceralbasecardiogenesiscohortcongenital heart disordercritical developmental periodcritical periodexome sequencinggenetic architecturegenetic testinggenome-widein vitro Assayinfant deathmortalitymouse developmentmouse geneticsmouse modelmutantnovelnovel diagnosticsreceptorreconstructionsmoothened signaling pathwaystillbirthtraffickingubiquitin ligaseubiquitin-protein ligase
项目摘要
Project Summary
A protein traffic control system that regulates left-right patterning and heart development
Structural birth defects represent the leading cause of infant deaths. Congenital Heart Defects (CHDs) are the
most common structural birth defects, affecting ~40,000 babies each year. Amongst CHDs, a disproportionate
burden of mortality and morbidity is due to “severe” CHDs, defined as those that require surgery or a
procedure before the first year of life. The molecular mechanisms that drive severe CHDs are incompletely
understood, hampering preventative, diagnostic and therapeutic advances. Data from mouse studies and
human birth registries have revealed a striking association between severe CHDs and heterotaxy, defects in
left-right patterning of visceral organs. By integrating the expertise of three investigators in signal transduction,
mouse development, human genetics and CHDs, we have identified a novel cell-surface ubiquitination
pathway (the “MMM pathway”) that plays widespread roles in the patterning of tissues during development.
Disruption of this pathway leads to a characteristic syndrome of heterotaxy with severe CHDs in embryonic
mice, along with defects in other tissues such as the limb, skeleton and face. Three dimensional
reconstructions of the intracardiac anatomy of MMM mutant embryos reveal the presence of severe CHDs also
often seen in human patients, including double outlet right ventricle and transposition of the great arteries. The
MMM pathway is anchored at the cell surface by a receptor-like ubiquitin ligase complex composed of MEGF8,
a single-pass transmembrane protein, and MGRN1, a RING superfamily E3 ligase. This unique
membrane-tethered ubiquitination machine attenuates signaling through the iconic Hedgehog (Hh) pathway.
Mechanistically, the MMM components decrease the abundance of the Hh transducer Smoothened (SMO) by
direct ubiquitination, thereby reducing the sensitivity of target cells to Hh ligands. We propose to test the
hypothesis that the MMM pathway functions as a traffic control system for signaling receptors that regulate
left-right patterning and cardiac development. Our first aim is focused on understanding the biochemical
function and developmental roles of MOSMO, an uncharacterized tetraspan membrane protein that we
identified as a third component of the MMM pathway. In the second aim, we test whether the heterotaxy and
CHDs seen in MMM mutant embryos are caused by elevated Hh signaling strength at critical periods in
development and also search for other signaling receptors regulated by the MMM pathway. Finally, we
leverage our comprehensive biochemical and developmental assays for MMM proteins to test the functionality
of rare coding variants in MMM genes seen in human patients with severe CHDs. Successful completion of this
project will uncover trafficking and signaling mechanisms that underlie the long-observed link between left-right
patterning and heart development and consequently advance our understanding of the molecular
pathophysiology of severe CHDs.
项目概要
调节左右模式和心脏发育的蛋白质交通控制系统
结构性出生缺陷是婴儿死亡的主要原因,先天性心脏病(CHD)是其中的主要原因。
最常见的结构性出生缺陷,每年影响约 40,000 名先天性心脏病婴儿。
死亡率和发病率的负担是由“严重”先心病引起的,定义为需要手术或治疗的疾病
导致严重先心病的分子机制尚不完全。
理解,阻碍了预防、诊断和治疗的进展。
人类出生登记显示,严重先天性心脏病与异型性、基因缺陷之间存在显着关联。
通过整合三位研究人员在信号转导方面的专业知识,
小鼠发育、人类遗传学和先心病,我们发现了一种新的细胞表面泛素化
途径(“MMM 途径”)在发育过程中的组织模式中发挥广泛作用。
该通路的破坏会导致胚胎中出现严重先心病的特征性异位综合征。
小鼠,以及其他组织的缺陷,例如四肢、骨骼和面部。
MMM 突变胚胎的心内解剖结构重建也揭示了严重先心病的存在
常见于人类患者,包括右心室双出口和大动脉转位。
MMM 通路通过由 MEGF8 组成的受体样泛素连接酶复合物锚定在细胞表面,
一种单次跨膜蛋白,以及 MGRN1(一种 RING 超家族 E3 连接酶)。
膜束缚的泛素化机器通过标志性的刺猬 (Hh) 途径减弱信号传导。
从机制上讲,MMM 组件通过以下方式降低了 Hh 传感器平滑 (SMO) 的丰度:
直接泛素化,降低靶细胞对 Hh 配体的敏感性,从而我们建议测试。
假设 MMM 通路作为信号受体的交通控制系统,调节
我们的首要目标是了解左右模式和心脏发育。
MOSMO 的功能和发育作用,一种未表征的四跨膜蛋白
确定为 MMM 途径的第三个组成部分在第二个目标中,我们测试异源性和
MMM 突变胚胎中出现的先天性心脏病 (CHD) 是由关键时期 Hh 信号强度升高引起的。
开发并寻找受 MMM 途径调节的其他信号受体。
利用我们针对 MMM 蛋白的全面生化和发育测定来测试其功能
在患有严重先天性心脏病的人类患者中发现了罕见的 MMM 基因编码变异,成功完成了这一任务。
该项目将揭示长期观察到的左右之间联系背后的贩运和信号机制
模式和心脏发育,从而增进我们对分子的理解
严重冠心病的病理生理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Teresa M Gunn其他文献
Teresa M Gunn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Teresa M Gunn', 18)}}的其他基金
Homeostatic control of the NMDA receptor co-agonist D-serine by SLC1A4
SLC1A4 对 NMDA 受体共激动剂 D-丝氨酸的稳态控制
- 批准号:
10366058 - 财政年份:2022
- 资助金额:
$ 75.67万 - 项目类别:
Parkin and MGRN1: common roles in mitochondria and neurodegeneration?
Parkin 和 MGRN1:在线粒体和神经退行性疾病中的共同作用?
- 批准号:
7878499 - 财政年份:2010
- 资助金额:
$ 75.67万 - 项目类别:
Parkin and MGRN1: common roles in mitochondria and neurodegeneration?
Parkin 和 MGRN1:在线粒体和神经退行性疾病中的共同作用?
- 批准号:
8039080 - 财政年份:2010
- 资助金额:
$ 75.67万 - 项目类别:
Functional analysis of Attractin-Mahogunin signaling
Attractin-Mahogunin 信号传导的功能分析
- 批准号:
7249350 - 财政年份:2003
- 资助金额:
$ 75.67万 - 项目类别:
相似国自然基金
KIR3DL1等位基因启动子序列变异影响其差异表达的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NUP205双等位基因突变影响纤毛发生而致内脏转位合并先天性心脏病的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
全基因组范围内揭示杂交肉兔等位基因特异性表达模式对杂种优势遗传基础的影响
- 批准号:32102530
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等位基因不平衡表达对采后香蕉果实后熟与品质形成的影响
- 批准号:31972471
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
高温影响水稻不同Wx等位基因表达及直链淀粉含量的分子机制研究
- 批准号:31500972
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pharmacological rescue of tooth eruption disorders
牙萌出障碍的药理学救援
- 批准号:
10737289 - 财政年份:2023
- 资助金额:
$ 75.67万 - 项目类别:
Evolutionary adaptation of dense microbial populations to range expansion
密集微生物种群对范围扩张的进化适应
- 批准号:
10751361 - 财政年份:2023
- 资助金额:
$ 75.67万 - 项目类别:
Mechanisms of Neurodegeneration in CMT4B3: a Complex Pediatric Neurodevelopmental Disorder
CMT4B3 神经退行性变的机制:一种复杂的小儿神经发育障碍
- 批准号:
10750509 - 财政年份:2023
- 资助金额:
$ 75.67万 - 项目类别:
Investigating craniofacial phenotypes, cellular function, and membrane biochemistry of ciliary proteins Rsg1 and the Fam92-Chibby-Dzip module
研究睫状蛋白 Rsg1 和 Fam92-Chibby-Dzip 模块的颅面表型、细胞功能和膜生物化学
- 批准号:
10755056 - 财政年份:2023
- 资助金额:
$ 75.67万 - 项目类别: