Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
基本信息
- 批准号:10181576
- 负责人:
- 金额:$ 37.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-03 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D Imaging4D MRIAdult Respiratory Distress SyndromeAffectAirAnatomyBreathingCOVID-19COVID-19 monitoringCOVID-19 pandemicCOVID-19 patientCaringChronicClinicalContrast MediaDevelopmentDiagnosticDimensionsDiseaseEarly identificationEconomic BurdenEnsureEvaluationFoundationsFour-dimensionalGoldHealthcareHeterogeneityImageImaging TechniquesIncidenceInflammationInvestigationIonizing radiationLeadLongitudinal StudiesLungLung CapacityLung diseasesMagnetic Resonance ImagingMeasuresMethodsMorbidity - disease rateMotionOutcomePatientsPerformancePlethysmographyPrevalenceProtocols documentationPublic HealthPulmonary FibrosisPulmonary function testsRadialRadiationRadiation exposureRecording of previous eventsResearchResidual stateResolutionRespiratory FailureRiskScanningSocietiesSpirometryStructural defectStructureTimeUnited StatesVariantViral PneumoniaX-Ray Computed Tomographybasecare burdenchest computed tomographyclinical imagingcoronavirus diseasedeep learningdisease heterogeneityimage reconstructionimaging modalityinsightlung basal segmentlung developmentlung imaginglung injurylung lobelung volumenovelpreventpulmonary functionpulmonary function declinerapid techniquerespiratorysoft tissueventilationvolunteer
项目摘要
Project Summary
The pandemic of coronavirus disease 2019 (COVID-19) has presented an unprecedented crisis and challenge
to public health, with tremendous health care and economic burden to our society. Given the high morbidity of
this new disease and increasing findings on COVID-associated complications, it has emerged as an important
and urgent clinical need to investigate the sequelae in patients recovered from COVID-19 (post-COVID patients),
particularly with respect to residual long-term lung damage such as post-COVID decline of pulmonary function
and/or development of lung structure abnormality. This will ensure that the long-term outcomes of post-COVID
patients can be studied, better understood, and properly managed. At present, Computed Tomography (CT) is
the gold standard for imaging lung anatomy, but its radiation burden precludes frequent longitudinal evaluations.
Pulmonary function is currently evaluated by spirometry or plethysmography, which provide global measures of
function but this is inadequate for assessing the extent of disease heterogeneity. The overarching aim of this
application is to develop novel rapid free-breathing four-dimensional (4D=3D+motion) lung MRI techniques that
will enable frequent evaluation of lung anatomy and function in the longitudinal follow-ups of post-COVID patients.
These new methods will be based on a combination of compressed sensing and golden-angle radial acquisition,
with incorporation of the latest advances in deep learning, which are all pioneered by our research team.
Specifically, we propose to develop, optimize and evaluate a 10-minute free-breathing lung MRI protocol that
will enable one-stop-shop characterization of whole lung anatomy and spatially-resolved pulmonary function
without administration of contrast media. The overall hypothesis is that the proposed 4D MRI techniques can
serve as a potential radiation-free alternative to CT for longitudinal evaluation of lung structure change and a
better alternative to spirometry for deriving regional function parameters that could provide additional novel
insights into the heterogeneity of lung ventilation and associated lung diseases. Our proposal includes the
following three specific aims: (i) development of motion-resolved 4D UTE-MRI (MRI with ultra-shot echo times)
for submillimeter resolution free-breathing whole-lung imaging, (ii) development of deep breathing-based 4D
UTE-MRI for deriving global/regional pulmonary function parameters, and (iii) development of deep learning-
based lung segmentation for efficient and automated estimation of pulmonary function parameters. Successful
completion of this project will deliver non-invasive, non-contrast-enhanced, and free-breathing 4D MRI
techniques for rapid assessment of lung anatomy and pulmonary function. Given the overwhelming prevalence
of COVID-19 and the overall cumulative incidence in the United States, our novel imaging methods would provide
a unique opportunity to augment post-COVID care, particularly for identifying COVID-19-induced lung fibrosis in
a timely manner and for studying the longitudinal changes of lung anatomy and global/regional pulmonary
function. These methods could also be extended for evaluation of other pulmonary diseases.
项目概要
2019年冠状病毒病(COVID-19)的大流行带来了前所未有的危机和挑战
公共卫生,给我们的社会带来巨大的医疗保健和经济负担。鉴于发病率高
这种新疾病以及越来越多的新冠肺炎相关并发症的发现,它已成为一种重要的疾病
临床迫切需要调查 COVID-19 康复患者(新冠肺炎后患者)的后遗症,
特别是关于残留的长期肺损伤,例如新冠肺炎后肺功能下降
和/或肺结构异常的发展。这将确保后疫情时代的长期成果
可以对患者进行研究、更好地理解和适当的管理。目前,计算机断层扫描(CT)
肺部解剖成像的黄金标准,但其辐射负担妨碍了频繁的纵向评估。
目前通过肺活量测定法或体积描记法评估肺功能,这提供了以下方面的全球测量:
功能,但这不足以评估疾病异质性的程度。本次活动的总体目标是
该应用程序是开发新型快速自由呼吸四维(4D=3D+运动)肺部MRI技术
将能够在新冠肺炎后患者的纵向随访中频繁评估肺部解剖结构和功能。
这些新方法将基于压缩感知和黄金角径向采集的组合,
结合了深度学习的最新进展,这些都是由我们的研究团队开创的。
具体来说,我们建议开发、优化和评估 10 分钟自由呼吸肺部 MRI 方案,该方案
将实现全肺解剖学和空间分辨肺功能的一站式表征
无需使用造影剂。总体假设是所提出的 4D MRI 技术可以
作为 CT 的潜在无辐射替代方案,用于纵向评估肺结构变化和
肺活量测定法的更好替代方案,用于导出区域功能参数,可以提供额外的新颖性
深入了解肺通气的异质性和相关肺部疾病。我们的建议包括
以下三个具体目标:(i) 开发运动分辨 4D UTE-MRI(具有超短回波时间的 MRI)
用于亚毫米分辨率自由呼吸全肺成像,(ii) 开发基于深呼吸的 4D
UTE-MRI 用于导出全局/区域肺功能参数,以及 (iii) 深度学习的发展 -
基于肺分割的肺功能参数的高效和自动估计。成功的
该项目的完成将提供非侵入性、非对比增强且自由呼吸的 4D MRI
快速评估肺解剖和肺功能的技术。鉴于压倒性的流行
COVID-19 以及美国的总体累积发病率,我们的新颖成像方法将提供
这是加强新冠肺炎后护理的独特机会,特别是在识别新冠肺炎 (COVID-19) 诱发的肺纤维化方面
及时研究肺解剖结构和全球/区域肺的纵向变化
功能。这些方法还可以扩展到其他肺部疾病的评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Feng其他文献
A Novel Web Service QoS Collaborative Prediction Approach with Biased Baseline
一种新颖的带偏差基线的 Web 服务 QoS 协作预测方法
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shen Limin;Chen Zhen;Li Feng - 通讯作者:
Li Feng
Exploiting Web service geographical neighborhood for collaborative QoS prediction
利用 Web 服务地理邻域进行协作 QoS 预测
- DOI:
10.1016/j.future.2016.09.022 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Chen Zhen;Shen Limin;Li Feng - 通讯作者:
Li Feng
Li Feng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Feng', 18)}}的其他基金
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10831643 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10831651 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
3D Free-Breathing Fat and Iron Corrected T1 Mapping
3D 自由呼吸脂肪和铁校正 T1 映射
- 批准号:
10432272 - 财政年份:2022
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10297597 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Structure-Function MRI of the Lung for Post-COVID-19 Management
用于 COVID-19 后管理的肺部快速结构功能 MRI
- 批准号:
10831646 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10297597 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
- 批准号:
10430267 - 财政年份:2021
- 资助金额:
$ 37.04万 - 项目类别:
相似国自然基金
融合闪烁光刺激与4D定量OCTA的视网膜功能成像技术与应用研究
- 批准号:62075189
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
复杂背景中行人目标的4D光场视觉感知机制与识别方法研究
- 批准号:61906133
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于结构与动态联合先验的PET心肌灌注直接4D参数成像方法
- 批准号:81871437
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于高光谱-可见光成像的水稻叶绿素4D表型提取方法研究
- 批准号:31800305
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别:
Non-invasive hemodynamic and biomechanic imaging methods for early risk prediction in aortic dissection
用于主动脉夹层早期风险预测的非侵入性血流动力学和生物力学成像方法
- 批准号:
10716472 - 财政年份:2023
- 资助金额:
$ 37.04万 - 项目类别: