Potassium transport by the KdpFABC complex

KdpFABC 复合体的钾转运

基本信息

  • 批准号:
    9982340
  • 负责人:
  • 金额:
    $ 34.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Potassium was adopted by the earliest organisms as the most prevalent cation in the cytoplasm. Today, the K+ gradient across the plasma membrane is largely responsible for the resting potential of all cells and high cytoplasmic K+ concentrations are essential for enzyme activity, osmoregulation and pH homeostasis. Animals rely on Na+/K+-ATPase, which is a P-type ATPase to maintains an ~10-fold gradient in K+. Whereas animals ingest K+ rich food and maintain homeostasis of extracellular fluids, plants, fungi and bacteria have to survive in a wide range of environmental conditions which can include limitations in K+. These organisms have evolved different K+ transport systems that are capable of generating gradients between 103 and 105. Transporters with moderate K+ affinity are constitutively expressed and, under normal circumstances, are capable of maintaining these gradients. In order to survive at very low K+ concentrations, however, bacteria have evolved a high- affinity, inducible system that functions as a primary active transporter. In particular, the kdp operon is expressed at micromolar K+ concentrations, producing a heterotetrameric membrane complex called KdpFABC that uses ATP to pump K+ into the cell. This transport system represents an unprecedented partnership between a channel-like subunit (KdpA) and a pump-like subunit (KdpB). The former belongs to the Superfamily of K+ transporters and the latter belongs to the P-type ATPase family. As part of the Kdp complex, both subunits have been repurposed relative to other members of their respective families. In particular, KdpB is a P-type ATPase that does not pump, but rather that uses ATP-driven conformational changes to control KdpA. KdpA has an architecture derived from K+ channels that has been adapted to move ions against an electro- chemical potential. We recently solved the first crystal structure of the KdpFABC complex, which sets the stage for characterizing the elements responsible for this process and for understanding communication and energy coupling between the subunits. Based on this structure, we have developed specific hypotheses which will be addressed through three specific aims. In Aim 1, we will use biochemical and biophysical assays to characterize steps in the reaction cycle and to identify conditions for stabilizing specific reaction intermediates. These assays will be used in conjunction with mutagenesis to identify the gates controlling transport through KdpA and to address mechanisms by which they are coupled to ATP-driven changes in KdpB. In Aim 2, we will use single-particle cryo-EM to solve structures of stabilized reaction intermediates in order to visualize the structural elements that drive transport. In Aim 3, we will address our unexpected finding of an inhibitory phosphoserine on KdpB. The first priority will be to minimize the level of phosphorylation either by mutagenesis, phosphatase treatment or growth conditions; an active complex with minimal phosphorylation is necessary to pursue the first two aims. In addition, we will explore our hypothesis for a physiological role of serine phosphorylation to shut off Kdp activity once extracellular K+ concentrations are restored.
钾被最早的生物体视为细胞质中最普遍的阳离子。今天,K+ 跨质膜的梯度在很大程度上决定了所有细胞的静息电位和高电位 细胞质 K+ 浓度对于酶活性、渗透压调节和 pH 稳态至关重要。动物 依赖 Na+/K+-ATP 酶(一种 P 型 ATP 酶)来维持 K+ 约 10 倍的梯度。而动物 摄入富含 K+ 的食物并维持细胞外液的稳态,植物、真菌和细菌必须生存 适用于各种环境条件,其中可能包括 K+ 的限制。这些生物已经进化了 不同的 K+ 传输系统能够产生 103 到 105 之间的梯度。 中等 K+ 亲和力是组成型表达的,并且在正常情况下能够维持 这些梯度。然而,为了在非常低的 K+ 浓度下生存,细菌进化出了一种高 K+ 浓度的细菌。 亲和力诱导系统,充当主要主动转运蛋白。特别地,kdp操纵子是 以微摩尔 K+ 浓度表达,产生称为 KdpFABC 的异四聚体膜复合物 使用 ATP 将 K+ 泵入细胞。该运输系统代表了前所未有的合作伙伴关系 位于通道状亚基 (KdpA​​) 和泵状亚基 (KdpB) 之间。前者属于超家族 K+ 转运蛋白,后者属于 P 型 ATP 酶家族。作为 Kdp 综合体的一部分,两者 子单元相对于各自家族的其他成员已被重新调整用途。特别地,KdpB 是 P 型 ATP 酶不泵送,而是使用 ATP 驱动的构象变化来控制 KdpA。 KdpA 具有源自 K+ 通道的架构,该架构适用于移动离子对抗电 化学势。我们最近解决了 KdpFABC 复合物的第一个晶体结构,这奠定了基础 用于描述负责此过程的元素以及理解通信和能量 子单元之间的耦合。基于这个结构,我们提出了具体的假设 通过三个具体目标来解决。在目标 1 中,我们将使用生化和生物物理检测来 表征反应循环中的步骤并确定稳定特定反应中间体的条件。 这些测定将与诱变结合使用,以确定控制转运的门 KdpA 并解决它们与 KdpB 中 ATP 驱动的变化耦合的机制。在目标 2 中,我们将 使用单粒子冷冻电镜解析稳定反应中间体的结构,以便可视化 驱动运输的结构要素。在目标 3 中,我们将解决我们意外发现的抑制因子 KdpB 上的磷酸丝氨酸。首要任务是通过以下方式最大限度地降低磷酸化水平: 诱变、磷酸酶处理或生长条件;具有最小磷酸化的活性复合物是 为实现前两个目标所必需的。此外,我们将探索我们的生理作用假设 一旦细胞外 K+ 浓度恢复,丝氨酸磷酸化就会关闭 Kdp 活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David L. Stokes其他文献

5th CryoNET Symposium
第五届CryoNET研讨会
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ipsita A. Banerjee;Lotta J Happonen;Inna;B.M.D. Sjöberg;D. Logan;LineMarie Christiansen;T. Dieudonné;J. Ulstrup;Joseph A. Lyons;Poul Nissen;Irina Iakovleva;Michael Hall;Intissar Anan;Linda Sandblad;E. Sauer;K. L. Ung;Mikael Winkler;Lukas Schulz;Martina Kolb;Dorina P. Janacek;Emil Dedic;David L. Stokes;Ulrich Z. Hammes;Bjørn;Panyella Pedersen;Sofia De Felice;Filippo Vascon;L. Maso;Giancarlo Tria;A. Grinzato;L. Cendron;C. Gaubitz;Xingchen Liu;Joshua Pajak;Nick Stone;Janelle Hayes;G. Demo;B. Kelch
  • 通讯作者:
    B. Kelch
Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing.
来自肌浆网的 CaATPase 三维晶体。
  • DOI:
  • 发表时间:
    1990
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    David L. Stokes;N. Green
  • 通讯作者:
    N. Green
Surface-enhanced Raman gene probe for HIV detection.
  • DOI:
    10.1021/ac970901z
  • 发表时间:
    1998-03-05
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    N. Isola;David L. Stokes;T. Vo‐Dinh
  • 通讯作者:
    T. Vo‐Dinh
Conformational changes in the Niemann-Pick Type C1 protein NCR1 drive sterol translocation
Niemann-Pick C1 型蛋白 NCR1 驱动甾醇易位的构象变化
  • DOI:
    10.1101/2023.09.08.556848
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kelly M. Frain;Emil Dedic;Lynette Nel;Anastasiia Bohush;Esben Olesen;David L. Stokes;Bjørn Panyella Pedersen
  • 通讯作者:
    Bjørn Panyella Pedersen
Conformational changes in the Niemann-Pick type C1 protein NCR1 drive sterol translocation.
Niemann-Pick 型 C1 蛋白 NCR1 的构象变化驱动甾醇易位。

David L. Stokes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David L. Stokes', 18)}}的其他基金

Molecular Mechanisms of Ion Transport
离子传输的分子机制
  • 批准号:
    10600000
  • 财政年份:
    2022
  • 资助金额:
    $ 34.14万
  • 项目类别:
Molecular Mechanisms of Ion Transport
离子传输的分子机制
  • 批准号:
    10330684
  • 财政年份:
    2022
  • 资助金额:
    $ 34.14万
  • 项目类别:
Molecular Mechanisms of Ion Transport - Equipment supplement
离子传输的分子机制 - 设备补充
  • 批准号:
    10798994
  • 财政年份:
    2022
  • 资助金额:
    $ 34.14万
  • 项目类别:
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
  • 批准号:
    10319967
  • 财政年份:
    2019
  • 资助金额:
    $ 34.14万
  • 项目类别:
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
  • 批准号:
    10083216
  • 财政年份:
    2019
  • 资助金额:
    $ 34.14万
  • 项目类别:
Metal Ion Transport by the Cation Diffusion Facilitator Family
阳离子扩散促进剂家族的金属离子传输
  • 批准号:
    10592636
  • 财政年份:
    2019
  • 资助金额:
    $ 34.14万
  • 项目类别:
Potassium transport by the KdpFABC complex
KdpFABC 复合体的钾转运
  • 批准号:
    10225328
  • 财政年份:
    2014
  • 资助金额:
    $ 34.14万
  • 项目类别:
Structural Studies of P-Type ATPases
P 型 ATP 酶的结构研究
  • 批准号:
    8712800
  • 财政年份:
    2014
  • 资助金额:
    $ 34.14万
  • 项目类别:
Transcontinental EM Initiative for Membrane Protein Structure
跨大陆 EM 膜蛋白结构倡议
  • 批准号:
    8323471
  • 财政年份:
    2010
  • 资助金额:
    $ 34.14万
  • 项目类别:
TRAINING PROGRAM IN MACROMOLECULAR STRUCTURE AND MECHANISM
大分子结构与机理培训项目
  • 批准号:
    8695408
  • 财政年份:
    2010
  • 资助金额:
    $ 34.14万
  • 项目类别:

相似海外基金

Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
  • 批准号:
    10568723
  • 财政年份:
    2023
  • 资助金额:
    $ 34.14万
  • 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
  • 批准号:
    10687401
  • 财政年份:
    2022
  • 资助金额:
    $ 34.14万
  • 项目类别:
Structure and function of ClpXP
ClpXP的结构和功能
  • 批准号:
    10373109
  • 财政年份:
    2021
  • 资助金额:
    $ 34.14万
  • 项目类别:
Elucidating the Molecular Mechanism of TRIP13-mediated Radiation Resistance in Oral Squamous Cell Carcinoma
阐明 TRIP13 介导的口腔鳞状细胞癌放射抗性的分子机制
  • 批准号:
    10480747
  • 财政年份:
    2021
  • 资助金额:
    $ 34.14万
  • 项目类别:
Defining the Translocation Mechanisms of SARS-CoV-2 nsp13 Helicase to Aid in Antiviral Development
定义 SARS-CoV-2 nsp13 解旋酶的易位机制以帮助抗病毒药物开发
  • 批准号:
    10490903
  • 财政年份:
    2021
  • 资助金额:
    $ 34.14万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了