Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
基本信息
- 批准号:9982344
- 负责人:
- 金额:$ 47.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-26 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAtomic Force MicroscopyBiologicalCellsCentronuclear myopathyCharacteristicsChemicalsChimera organismComplexCoupledCouplingCrowdingDependenceDiagnosticDimensionsDiseaseDominant-Negative MutationDynaminDynamin 2Dynamin IElementsEnvironmentEpilepsyEvolutionExtravasationGenesGeometryGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHumanHuman PathologyHydrolysisImpairmentIn VitroIndividualKineticsKnowledgeLengthLifeLinkLipidsMaintenanceMeasurementMeasuresMechanicsMediatingMembraneModernizationMolecularMutationNanoscopyNanotechnologyNeckOrganellesOsmotic PressureOutcomePathologicPathologyPathway interactionsPhenotypePhysiologicalPoint MutationProblem SolvingProcessPropertyProtein AnalysisProtein EngineeringProtein IsoformsProteinsRegulationSignal TransductionSpeedStochastic ProcessesStressSurfaceSystemTertiary Protein StructureTestingTherapeuticTimeTissuesTubeVariantbasebiophysical techniquesconstrictiondimerin vivoinsightmembermembrane activitymembrane modelmutantnanonanomechanicsnanoscalenervous system disordernext generationnovelnovel therapeutic interventionprotein complexprototypepublic health relevancereconstitutionself assemblysingle moleculesubmicrontool
项目摘要
PROJECT SUMMARY
Membrane fission is associated with the breakage of a tiny nanometer-scale membrane neck connecting two
separating/dividing membrane compartments at the late stages of division. Severing this neck in a timely
and leakage-free manner is critical for normal functioning of endomembrane systems, hence membrane
fission is performed by specialized and tightly-regulated protein machinery assembling on the neck. While
our current mechanistic understanding of fission, in life and disease, is heavily based upon in vitro
reconstitution approaches, such approaches rarely (if at all) reproduce confined and crowded environment
of the neck. Instead, in vitro reconstitution has been mostly performed using large (sub-micron to micron
scale) membrane templates of various physico-chemical properties, resulting in controversial outcomes and
precluding rigorous mechanistic analysis of fission. This project is focused on creation of the next-
generation in vitro approaches that reconstruct and quantify membrane fission at physiological length/time
scales. We will combine nanotechnology with modern biophysical approaches and protein engineering to
solve the long-standing puzzle of membrane fission mediated by the proteins of dynamin superfamily, which
are intimately involved in intracellular fusion/fission and directly linked to various human pathologies. We
will approach this problem from several different angles:
- We will perform single-molecule analysis of dynamin oligomerization on membrane surfaces with
precisely (2 nm) calibrated curvature (10-1 to 10-2 nm range) to identify and characterize
elementary mechano-chemical units assembled by dynamin. We will determine (i) the
pathways of dynamin oligomerization/self-assembly on a curved membrane surface, (ii) the
size/geometrical arrangement of minimal oligomers capable of cooperative GTP hydrolysis and (iii)
the effects of membrane curvature on self-assembly and GTPase activity of small dynamin oligomers.
- We will assess membrane activity of individual dynamin oligomers (dimers and higher order
multimers) at nano-confined membrane templates to determine how the force fields
produced by dynamin are coupled to lipid rearrangements throughout fission. We will
(i) measure the local forces produced by different dynamin oligomers and quantify associated
membrane deformations and instabilities, and (ii) determine pathway(s) of lipid rearrangements and
their dependence on the size/geometry of dynamin complexes and geometrical/mechanical
parameters of membrane templates.
- We will analyze effects of auxiliary proteins and critical mutations of dynamins, compare the self-
assembly and fission pathways for different members of dynamin superfamily to distinguish
general and protein-specific parameters (perhaps, even specific pathways) of
membrane fission and unravel molecular mechanisms behind functional evolution
and regulation of dynamin fission machinery.
项目概要
膜裂变与连接两个膜的微小纳米级膜颈的破裂有关。
在分裂后期分离/划分膜室。及时割断这条脖子
无泄漏方式对于内膜系统的正常功能至关重要,因此膜
裂变是由组装在颈部的专门且严格调节的蛋白质机器进行的。尽管
我们目前对生命和疾病中裂变的机制理解很大程度上基于体外
重建方法,这种方法很少(如果有的话)再现受限和拥挤的环境
颈部的。相反,体外重构主要是使用大(亚微米到微米)进行的。
规模)膜模板的各种物理化学性质,导致有争议的结果和
排除了裂变的严格机械分析。该项目的重点是创建下一代
产生在生理长度/时间重建和量化膜裂变的体外方法
秤。我们将纳米技术与现代生物物理方法和蛋白质工程相结合
解决了由动力超家族蛋白介导的膜裂变的长期难题,
密切参与细胞内融合/裂变,并与各种人类病理直接相关。我们
将从几个不同的角度来解决这个问题:
- 我们将对膜表面的动力寡聚进行单分子分析
精确 (2 nm) 校准曲率(10-1 至 10-2 nm 范围)来识别和表征
由动力组装的基本机械化学单元。我们将确定 (i)
弯曲膜表面上的动力寡聚/自组装途径,(ii)
能够协同 GTP 水解的最小低聚物的尺寸/几何排列,以及 (iii)
膜曲率对小动力寡聚体自组装和 GTP 酶活性的影响。
- 我们将评估单个动力寡聚体(二聚体和更高阶)的膜活性
多聚体)在纳米限域膜模板上确定力场如何
动力产生的物质在整个裂变过程中与脂质重排相结合。我们将
(i) 测量不同动力低聚物产生的局部力并量化相关的
膜变形和不稳定性,以及(ii)确定脂质重排的途径和
它们对动力复合物的尺寸/几何形状和几何/机械的依赖
膜模板参数。
- 我们将分析辅助蛋白和动力蛋白关键突变的影响,比较自我
动力蛋白超家族不同成员的组装和裂变途径以区分
一般和蛋白质特异性参数(也许,甚至是特定途径)
膜裂变并揭示功能进化背后的分子机制
和动力裂变机械的调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vadim A Frolov其他文献
Vadim A Frolov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vadim A Frolov', 18)}}的其他基金
Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
- 批准号:
9217487 - 财政年份:2017
- 资助金额:
$ 47.81万 - 项目类别:
Functional nanoscopy of membrane deformations and fission by dynamin superfamily members
动力超家族成员膜变形和裂变的功能纳米观察
- 批准号:
10246322 - 财政年份:2017
- 资助金额:
$ 47.81万 - 项目类别:
相似国自然基金
基于原子力显微镜探讨肝纤维化动态进展中黏弹性生物力学基础
- 批准号:82202191
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于原子力显微镜与深度神经网络训练的巨噬细胞生物力学的研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
Aβ作用于活体细胞膜的原子力显微术研究
- 批准号:21703163
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
新显微活细胞微操方法的建立以及在细菌生物被膜研究中的应用
- 批准号:21774117
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
金属蛋白内配位化学键的单分子研究
- 批准号:21771103
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
- 批准号:
10646613 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
Dissecting the Acid Ceramidase Pathway in Hepatic Fibrogenesis
剖析肝纤维形成中的酸性神经酰胺酶途径
- 批准号:
10736680 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
Parametric design software for nanostructured CRISPR payloads
用于纳米结构 CRISPR 有效负载的参数化设计软件
- 批准号:
10602823 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别:
Unveiling Functional Roles of Apical Surface Interactions Between Opposing Cell Layers
揭示相对细胞层之间顶端表面相互作用的功能作用
- 批准号:
10629101 - 财政年份:2023
- 资助金额:
$ 47.81万 - 项目类别: