MAPS: Mobile Assessment for the Prediction of Suicide
MAPS:自杀预测的移动评估
基本信息
- 批准号:9982129
- 负责人:
- 金额:$ 71.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAcousticsAcuteAddressAdolescentBehaviorBiologicalCar PhoneCause of DeathCellular PhoneCenters for Disease Control and Prevention (U.S.)Cessation of lifeClinicClinicalClinical ManagementClinical assessmentsCommunicationComputational TechniqueComputer ModelsComputing MethodologiesControl GroupsDataDevelopmentDiscriminationDisease susceptibilityEcological momentary assessmentEmotionalEventFacial ExpressionFailureFeeling suicidalFibrinogenFunctional disorderGeographyHigh School StudentHospitalizationHourIndividualInpatientsInterviewLanguageLifeLightLiteratureLonelinessMachine LearningMeasuresMedical centerMeta-AnalysisMethodologyMethodsModernizationMonitorMovementMusicOutpatientsParticipantPatient Self-ReportPatientsPatternPredictive ValueProcess MeasurePublic HealthQuestionnairesRecording of previous eventsReportingResearchRiskRisk AssessmentRisk FactorsSavingsSeveritiesSleep disturbancesSleeplessnessSocial InteractionSoftware ToolsStressSuicideSuicide attemptTechniquesTechnologyTestingText MessagingTimeUniversitiesVariantVoiceactigraphyactive methodadolescent suicideagedbasebehavior predictionbehavioral outcomebullyingclinical carediariesemotional distressfollow up assessmentfollow-uphigh-risk adolescentsideationimprovedindexinginsightinstrumentlanguage processinglongitudinal designmobile computingprediction algorithmpredictive modelingprogramspsychiatric symptomreal time monitoringrecruitsensorsexsignal processingsocialsocial deficitssocial mediasocial relationshipsstatisticssuccesssuicidal adolescentsuicidal behaviorsuicidal risksuicide attemptertheoriestool
项目摘要
Project Summary
Suicide is the second leading cause of death among adolescents. In addition to deaths, 16% of
adolescents report seriously considering suicide each year, and 8% make one or more attempts. Despite these
alarming statistics, little is known about factors that confer imminent risk for suicide. Thus, developing effective
methods to improve short-term prediction of suicidal thoughts and behaviors (STBs) is critical.
Currently, our most robust predictors of STBs are demographic or clinical indicators that have relatively
weak predictive value. However, there is an emerging literature on short-term prediction of suicide risk that has
identified a number of promising candidates, including rapid escalation of: (a) emotional distress, (b) social
dysfunction (i.e., bullying, rejection), and (c) sleep disturbance. Yet, prior studies are limited in two critical ways.
First, they rely almost entirely on self-report. Second, most studies have not focused on assessment of these
risk factors using intensive longitudinal assessment techniques that are able to capture the dynamics of
changes in risk states. These are fundamental limitations. While suicidal ideation may precede an attempt by
years, socio-emotional changes preceding a suicide attempt often occurs within the time span of minutes to
hours. This study will capitalize on recent developments in real-time monitoring methods that harness
adolescents' naturalistic use of smartphone technology. Specifically, we now have the capacity to use: (a)
smartphone technology to conduct intensive longitudinal assessments monitoring putative risk factors with
minimal participant burden and (b) modern computational techniques to develop predictive algorithms for STBs.
The project will include high-risk adolescents (n = 200) aged 13-18 years recruited from outpatient and
inpatient clinics: (a) recent suicide attempters with current ideation (n = 70), (b) current suicide ideators with no
attempt history (n = 70), and (c) a psychiatric control group with no STB history (n = 60). Effortless Assessment
of Risk States (EARS) will be used to continuously measure variables relevant to key risk domains—emotional
distress, social dysfunction, and sleep disturbance—through passive monitoring of participants' smartphone
use. First, we will test between-group differences in risk factors during an initial 2-week period, and determine
the extent to which risk factors derived from mobile phones improves discrimination over self-reported
indicators. Second, we will use statistical techniques to test whether the risk factors improve short-term
prediction of STBs (e.g., suicide attempts, hospitalization) during the 6-month follow-up period above and
beyond clinical assessments. Third, computational machine learning techniques—based on a priori and
learned features—will develop predictive models that utilize the full range of intensive longitudinal data
collected by the active and passive monitoring methods to predict group membership and STB outcomes.
Ultimately, by leveraging smartphone technology, we aim to improve the short-term STB prediction and provide
clinicians and patients with reliable, scalable and actionable tools that will reduce the needless loss of life.
项目概要
自杀是青少年除死亡之外的第二大死因。
每年都有青少年认真考虑自杀,尽管如此,仍有 8% 的青少年尝试过自杀。
令人震惊的统计数据表明,人们对导致自杀风险的因素知之甚少,因此,开发有效的方法。
改善自杀想法和行为(STB)短期预测的方法至关重要。
目前,我们对 STB 最有力的预测因素是人口统计或临床指标,这些指标具有相对
然而,有一些关于自杀风险短期预测的新兴文献。
确定了一些有前途的候选者,包括迅速升级的:(a)情绪困扰,(b)社交
功能障碍(即欺凌、拒绝)和(c)睡眠障碍然而,先前的研究在两个关键方面受到限制。
首先,他们几乎完全依赖于自我报告,其次,大多数研究并没有集中于对这些的评估。
使用能够捕捉动态的密集纵向评估技术的风险因素
风险状态的变化是根本性的限制,而自杀意念可能先于尝试。
数年来,自杀未遂前的社会情绪变化通常发生在几分钟内
这项研究将利用实时监测方法的最新发展。
具体来说,我们现在有能力使用:(a)
智能手机技术进行密集的纵向评估,监测假定的风险因素
最小的负担和(b)现代计算技术来开发机顶盒的预测参与者算法。
该项目将包括从门诊和医院招募的 13-18 岁高危青少年 (n = 200)。
住院诊所:(a) 最近有自杀念头的自杀者 (n = 70),(b) 目前有自杀念头的人
尝试历史(n = 70),以及(c)没有 STB 历史的精神病对照组(n = 60)。
风险状态(EARS)将用于持续测量与关键风险领域相关的变量——情绪
痛苦、社交功能障碍和睡眠障碍——通过参与者智能手机的被动监控
首先,我们将在最初的两周内测试危险因素的组间差异,并确定。
手机带来的风险因素在多大程度上改善了对自我报告的歧视
其次,我们将利用统计技术来检验风险因素是否短期内改善。
上述 6 个月随访期间的 STB 预测(例如自杀未遂、住院治疗)
第三,基于先验和计算的机器学习技术。
学习到的特征——将开发利用全方位纵向密集数据的预测模型
通过主动和被动监测方法收集来预测群体成员资格和 STB 结果。
最终,通过利用智能手机技术,我们的目标是改进短期 STB 预测并提供
为战士和患者提供可靠、可扩展且可操作的工具,以减少不必要的生命损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NICHOLAS B ALLEN其他文献
NICHOLAS B ALLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NICHOLAS B ALLEN', 18)}}的其他基金
Development and testing of a digitally assisted risk reduction platform for youth at high risk for suicide
为自杀高危青少年开发和测试数字辅助风险降低平台
- 批准号:
10728554 - 财政年份:2022
- 资助金额:
$ 71.41万 - 项目类别:
MAPS: Mobile Assessment for the Prediction of Suicide
MAPS:自杀预测的移动评估
- 批准号:
10610192 - 财政年份:2022
- 资助金额:
$ 71.41万 - 项目类别:
MAPS: Mobile Assessment for the Prediction of Suicide
MAPS:自杀预测的移动评估
- 批准号:
10228034 - 财政年份:2018
- 资助金额:
$ 71.41万 - 项目类别:
相似国自然基金
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Minimally Invasive High Intensity Therapeutic Ultrasound for the Treatment of Obstructive Hypertrophic Cardiomyopathy
微创高强度超声治疗梗阻性肥厚型心肌病
- 批准号:
10851470 - 财政年份:2023
- 资助金额:
$ 71.41万 - 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 71.41万 - 项目类别:
Mentored Patient-Oriented Research of Novel Mechanisms Linking Pain, Sleep-Wake Patterns, and Autonomic Activity in Rheumatic Diseases
指导以患者为导向的风湿性疾病中疼痛、睡眠-觉醒模式和自主活动相关新机制的研究
- 批准号:
10592158 - 财政年份:2023
- 资助金额:
$ 71.41万 - 项目类别:
The neural mechanisms and mnemonic consequences of sound processing during sleep
睡眠期间声音处理的神经机制和记忆后果
- 批准号:
10734969 - 财政年份:2023
- 资助金额:
$ 71.41万 - 项目类别: