Biodegradable and Biocompatible Semiconductor Nanoparticles for Deep Tissue Imaging

用于深层组织成像的可生物降解和生物相容性半导体纳米颗粒

基本信息

项目摘要

Project Summary/Abstract Fluorescence has significant potential for biomedical imaging applications because of the relatively low cost of imaging equipment, the nominal toxicity of non-ionizing radiation (i.e., light), the potential for molecular imaging using target-specific contrast agents, and the prospect of multiplexed imaging using discretely colored fluorophores. Molecules common in biological tissues including lipids, water, and hemoglobin scatter and absorb light, rendering tissue opaque to visible wavelengths, but longer, near infrared (NIR) wavelengths penetrate deeper, giving us optical windows into the body. The first, second, and third NIR optical windows (NIR-I, II, and III) each have advantages ranging from use with accessible and economical Si detectors (NIR-I) to a reduction in scattering, and thus a marked improvement in resolution, in the NIR-II and III. To see inside a tissue, we require bright, photostable, highly absorbing, NIR fluorophores. In addition, the regular clinical use of any contrast agent requires that it is biocompatible and removed from the body following its use. We propose a new materials development effort to synthesize biocompatible and biodegradable semiconductor QDs that can be tuned for imaging in the NIR-I, II, or III. We propose a novel, optically active semiconductor nanoparticle that fully degrades in vivo for clinical molecular imaging. Inorganic contrast agents like semiconductor quantum dots (QDs) have been the focus of extensive biomedical research, but hold little promise for clinical translation because the materials comprise toxic constituents. Even inert, seemingly biocompatible inorganic materials like gold nanoparticles carry the clinical risk of accumulating indefinitely in tissues like the liver. This is in stark contrast to the only inorganic nanoparticle that has been FDA-approved to date: iron oxide nanoparticles (IONs) for MRI contrast and the treatment of anemia. The absence of heavy metals in IONs avoids toxicity, while degradation and bile excretion circumvent the potentially severe kidney strain experienced by patients receiving molecular contrast agents. This material profile inspires our innovative approach to reinventing QDs for clinical optical imaging. We hypothesize that heavy metal-free nanoparticles comprising only bioessential elements will be degraded and excreted just like iron oxide. The choice of a material with a small bandgap (0.6 eV) indicates that the absorption and emission will be size-tunable through NIR-I, II, and III wavelength regimes, enabling paradigm shifting levels of light penetration through tissues and clarity in fluorescence imaging. We will use computational approaches like density functional theory (DFT) modeling of various crystal structures to predict and optimize nanomaterial optical properties to rationally design semiconductor nanoparticles for clinical applications. Through this Exploratory Technology Development R21, we will synthesize and characterize novel semiconductor nanoparticles that address current limitations in function, toxicity, and bioaccumulation through their photoluminescence in the NIR-I, II, and III regimes, composition of bioessential elements, and capacity for in vivo degradation and excretion.
项目概要/摘要 由于成本相对较低,荧光在生物医学成像应用中具有巨大的潜力。 成像设备、非电离辐射(即光)的名义毒性、分子成像的潜力 使用目标特异性造影剂,以及使用离散颜色的多重成像的前景 荧光团。生物组织中常见的分子,包括脂质、水和血红蛋白,会散射和吸收 光,使组织对可见波长不透明,但更长的近红外 (NIR) 波长可以穿透 更深,为我们提供了进入身体的光学窗口。第一、第二和第三近红外光学窗口(NIR-I、II 和 III) 每种方法都有优点,从使用方便且经济的硅探测器 (NIR-I) 到减少 NIR-II 和 III 中的散射,从而显着提高了分辨率。要查看组织内部,我们需要 明亮、光稳定、高吸收性、近红外荧光团。此外,临床上定期使用任何造影剂 要求它具有生物相容性,并在使用后从体内清除。我们提出了一种新材料 开发工作合成生物相容性和可生物降解的半导体量子点,可以调整 NIR-I、II 或 III 中的成像。我们提出了一种新颖的光学活性半导体纳米粒子,它完全 在体内降解用于临床分子成像。半导体量子点等无机造影剂 (量子点)一直是广泛生物医学研究的焦点,但临床转化前景渺茫 因为这些材料含有有毒成分。即使是惰性的、看似生物相容的无机材料,如 金纳米颗粒具有在肝脏等组织中无限期积累的临床风险。这是赤裸裸的 与迄今为止 FDA 批准的唯一无机纳米颗粒形成鲜明对比:氧化铁纳米颗粒 (ION) 用于 MRI 对比和贫血治疗。离子中不含重金属,避免了毒性,同时 降解和胆汁排泄避免了接受治疗的患者可能经历的严重肾损伤 分子造影剂。这种材料特性激发了我们重新发明临床量子点的创新方法 光学成像。我们假设仅包含生物必需元素的无重金属纳米粒子将 像氧化铁一样被降解和排出体外。选择带隙较小 (0.6 eV) 的材料表明 吸收和发射将通过 NIR-I、II 和 III 波长范围进行尺寸可调,从而使 光穿透组织的水平和荧光成像清晰度的范式转变。我们将使用 密度泛函理论 (DFT) 等计算方法对各种晶体结构进行建模以进行预测 并优化纳米材料的光学特性,合理设计用于临床的半导体纳米颗粒 应用程序。通过这个探索性技术开发 R21,我们将合成和表征新颖的 半导体纳米粒子,通过以下方式解决当前功能、毒性和生物累积方面的限制 它们在 NIR-I、II 和 III 范围内的光致发光、生物必需元素的组成以及 体内降解和排泄。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Marie Dennis其他文献

Allison Marie Dennis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allison Marie Dennis', 18)}}的其他基金

In Vivo Mapping of Enzyme Activity using SWIR-emitting, Self-illuminating Quantum Dot Sensors
使用短波红外发射、自发光量子点传感器绘制酶活性体内图谱
  • 批准号:
    10762565
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
  • 批准号:
    10224242
  • 财政年份:
    2019
  • 资助金额:
    $ 24.75万
  • 项目类别:
Multiplexed Imaging in the Near Infrared with Indium Phosphide Quantum Shells
使用磷化铟量子壳进行近红外多重成像
  • 批准号:
    10682976
  • 财政年份:
    2019
  • 资助金额:
    $ 24.75万
  • 项目类别:

相似国自然基金

基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
选区激光熔化用高耐热高强镍基高温合金设计与高温强韧化机理研究
  • 批准号:
    52371012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
  • 批准号:
    52371282
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于可剪切/不可剪切纳米析出相协同调控的铝合金强韧化机制研究
  • 批准号:
    52301162
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辐照锆合金不同滑移系无缺陷通道的形成机理研究
  • 批准号:
    12302279
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Studentship
CAREER: Understanding the Synergistic Effects of Irradiation and Molten Salt Corrosion on NiCr Alloys
职业:了解辐照和熔盐腐蚀对镍铬合金的协同效应
  • 批准号:
    2340019
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
計算科学による金属間化合物系水素透過材料の新領域開拓
利用计算科学探索金属间氢渗透材料的新领域
  • 批准号:
    24KJ1227
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
水蒸気を用いたアルミニウム合金上への皮膜形成過程に対する溶質原子の役割
溶质原子在铝合金水蒸气成膜过程中的作用
  • 批准号:
    24KJ1978
  • 财政年份:
    2024
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了