Imaging the origin of dendritic spine abnormalities in fragile X mice
脆弱 X 小鼠树突棘异常起源的成像
基本信息
- 批准号:7391375
- 负责人:
- 金额:$ 8.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:4-methoxy-7-nitroindolinyl-glutamateACPDAbbreviationsAcidsActinsAcuteAddressAffectAgeAgonistAnimal Disease ModelsAutistic DisorderAxonBrainCalciumCellsChromosome PairingComputer softwareCycloleucineCytoskeletonDataDefectDendritesDendritic SpinesDevelopmentDicarboxylic AcidsDimethyl SulfoxideDiseaseEarEmployee StrikesEstersExhibitsFMR1FXTASFamilyFigs - dietaryFilopodiaFragile X SyndromeFutureGanciclovirGeneticGlutamate ReceptorGlutamatesGreen Fluorescent ProteinsGrowthGrowth ConesGuanosine Triphosphate PhosphohydrolasesHippocampus (Brain)ImageIndividualInheritedKnock-outKnockout MiceKnowledgeLaboratoriesLengthLinkLong-Term DepressionLong-Term PotentiationMediatingMental RetardationMetabotropic Glutamate ReceptorsMicroscopyMolecular TargetMonitorMorphogenesisMusMutant Strains MiceN-MethylaspartateNeocortexNeonatalNervous system structureNeuronsPositioning AttributePrincipal InvestigatorProcessPropertyProteinsRateReceptor SignalingRecruitment ActivityResearch PersonnelRoleSignal TransductionSliceStructureSynapsesTechniquesTestingTestisTextTherapeuticTrainingTremor/Ataxia SyndromeVertebral columnWeekWorkalpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acidalpha-methyl-4-carboxyphenylglycineamino 3 hydroxy 5 methylisoxazole 4 propionatecell motilityclinically relevantclinically significantdaydensitydesigndihydroxyphenylethylene glycolgamma-Aminobutyric Acidhippocampal pyramidal neuronin vivoinnovationmetabotropic glutamate receptor type 1mouse modelneocorticalnovelpostnatalprogramspyridineresearch studyresponserhosynaptogenesistwo-photon
项目摘要
We want to investigate the mechanisms responsible for dendritic spine abnormalities in Fragile X syndrome
(FXS). FXS is the most common inherited cause of autism and mental retardation. A clear link between the
functional and structural (increased density and length of spines) abnormalities in FXS has not been
established. A very similar defect in spines has been found in a knockout mouse model of FXS. Spines in
FXS resemble dendritic filopodia, which are spine precursors. We show that in developing mouse neocortical
neurons, filopodia are replaced by spines in the second postnatal week. Interestingly, the greatest
differences in dendritic protrusions between wild type and fragile X mice occur at 1 week of age, and
diminish thereafter. It is conceivable that anomaliesof filopodia in the first postnatal days are even more
striking in the knockout mice, but this has not been explored. Our preliminary data also reveal that dendritic
protrusions are longer and more densely packed when neuronal activity is blocked, so it is possible that
spontaneous activity is reduced in FXS. Fragile X mice exhibit excessive group I metabotropic glutamate
receptor (mGluR)-mediated long-term depression. But a direct link between abnormal mGluR signaling and
spine dysgenesis has not yet been discovered. Here, we show that filopodia elongate in response to
glutamate and note that others have shown that spines elongate with stimulation of group I mGluRs. We
want to test the general hypothesis that a defect in filopodia, linked to abnormal group I mGluR signaling
and/or to decreased neuronal activity occurs in FXS, and might impair their ability to mature into spines.
Innovative and cutting-edge microscopy techniques will be used. First, we will look for abnormalities of
filopodia in pyramidal neurons of fragile X mice with in vivo two-photon imaging in the first postnatal days.
Next, we will examine whether spontaneous neuronal activity is reduced in neonatal fragile X mice, using
two-photon calcium imaging of hundreds of neurons simultaneously. Finally, we will use two-photon
glutamate uncaging to study whether glutamate-mediated elongation of filopodia is disrupted in FXS and
whether mGluRs participate in this phenomenon. The experiments in this proposal are designed to identify
novel molecular targets for therapeutics in FXS. Because spine abnormalities are common to several other
types of mental retardation and autism disorders, these studies are of broad clinical significance.
我们想要研究导致脆性 X 综合征树突棘异常的机制
(FXS)。 FXS 是自闭症和智力低下最常见的遗传原因。之间有明确的联系
FXS 的功能和结构(脊柱密度和长度增加)异常尚未得到证实
已确立的。在 FXS 基因敲除小鼠模型中也发现了非常相似的脊柱缺陷。刺在
FXS 类似于树突状丝状伪足,它们是脊柱前体。我们表明,在小鼠新皮质的发育过程中
神经元、丝状伪足在出生后第二周被棘取代。有趣的是,最伟大的
野生型和脆性 X 小鼠之间的树突突起差异出现在 1 周龄时,并且
此后减少。可以想象,产后最初几天的丝状伪足异常现象更为严重。
在基因敲除小鼠中发挥作用,但这尚未得到探索。我们的初步数据还表明,树突状
当神经元活动受阻时,突起会变得更长、更密集,因此有可能
FXS 中的自发活动减少。脆性 X 小鼠表现出过量的 I 类代谢型谷氨酸
受体(mGluR)介导的长期抑郁症。但异常的 mGluR 信号传导与
尚未发现脊柱发育不全。在这里,我们表明丝状伪足响应于延长
谷氨酸盐,并注意到其他人已经表明刺会随着 I 组 mGluR 的刺激而伸长。我们
想要检验丝状伪足缺陷与异常 I 组 mGluR 信号传导相关的一般假设
和/或 FXS 中神经元活动减少,并可能损害它们成熟为脊柱的能力。
将使用创新和尖端的显微镜技术。首先,我们要寻找异常情况
出生后第一天体内双光子成像显示脆性 X 小鼠锥体神经元的丝状伪足。
接下来,我们将使用以下方法检查新生脆性 X 小鼠的自发神经元活动是否减少
同时对数百个神经元进行双光子钙成像。最后,我们将使用双光子
谷氨酸解笼锁以研究谷氨酸介导的丝状伪足伸长是否在 FXS 和
mGluR 是否参与了这一现象。本提案中的实验旨在确定
FXS 治疗的新分子靶点。因为脊柱异常对于其他几种疾病来说很常见
类型的精神发育迟滞和自闭症障碍,这些研究具有广泛的临床意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Portera-Cailliau其他文献
Carlos Portera-Cailliau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Portera-Cailliau', 18)}}的其他基金
Postnatal Cajal-Retzius neurons as pacemakers of neocortical network activity
出生后 Cajal-Retzius 神经元作为新皮质网络活动的起搏器
- 批准号:
8491261 - 财政年份:2013
- 资助金额:
$ 8.65万 - 项目类别:
Mechanisms of structural neuronal plasticity and functional remapping after strok
中风后结构神经元可塑性和功能重映射的机制
- 批准号:
9242705 - 财政年份:2013
- 资助金额:
$ 8.65万 - 项目类别:
Mechanisms of structural neuronal plasticity and functional remapping after strok
中风后结构神经元可塑性和功能重映射的机制
- 批准号:
9021007 - 财政年份:2013
- 资助金额:
$ 8.65万 - 项目类别:
Mechanisms of structural neuronal plasticity and functional remapping after strok
中风后结构神经元可塑性和功能重映射的机制
- 批准号:
8823835 - 财政年份:2013
- 资助金额:
$ 8.65万 - 项目类别:
Postnatal Cajal-Retzius neurons as pacemakers of neocortical network activity
出生后 Cajal-Retzius 神经元作为新皮质网络活动的起搏器
- 批准号:
8641437 - 财政年份:2013
- 资助金额:
$ 8.65万 - 项目类别:
Mechanisms of structural neuronal plasticity and functional remapping after strok
中风后结构神经元可塑性和功能重映射的机制
- 批准号:
8500712 - 财政年份:2013
- 资助金额:
$ 8.65万 - 项目类别:
The Role of Cajal-Retzius Neurons in Postnatal Cortical Circuit Assembly
Cajal-Retzius 神经元在产后皮质回路组装中的作用
- 批准号:
8105527 - 财政年份:2011
- 资助金额:
$ 8.65万 - 项目类别:
Imaging the origin of dendritic spine abnormalities in fragile X mice
脆弱 X 小鼠树突棘异常起源的成像
- 批准号:
8079999 - 财政年份:2010
- 资助金额:
$ 8.65万 - 项目类别:
A STEM Microscope for High-speed 2-photon Calcium Imaging
用于高速 2 光子钙成像的 STEM 显微镜
- 批准号:
7811542 - 财政年份:2009
- 资助金额:
$ 8.65万 - 项目类别:
A STEM Microscope for High-speed 2-photon Calcium Imaging
用于高速 2 光子钙成像的 STEM 显微镜
- 批准号:
7938588 - 财政年份:2009
- 资助金额:
$ 8.65万 - 项目类别:
相似国自然基金
基于边界元有限元耦合的管节点疲劳裂纹数值模拟及寿命预测
- 批准号:10872178
- 批准年份:2008
- 资助金额:37.0 万元
- 项目类别:面上项目
相似海外基金
Imaging the origin of dendritic spine abnormalities in fragile X mice
脆弱 X 小鼠树突棘异常起源的成像
- 批准号:
7177214 - 财政年份:2007
- 资助金额:
$ 8.65万 - 项目类别:
Imaging the origin of dendritic spine abnormalities in fragile X mice
脆弱 X 小鼠树突棘异常起源的成像
- 批准号:
7385884 - 财政年份:2007
- 资助金额:
$ 8.65万 - 项目类别:
METABOTROPIC GLUTAMATE RECEPTORS AND EXCITOTOXICITY
代谢型谷氨酸受体和兴奋性毒性
- 批准号:
7154744 - 财政年份:2006
- 资助金额:
$ 8.65万 - 项目类别:
Development of vesicular glutamate transnporter inhibitors
囊泡谷氨酸转运蛋白抑制剂的开发
- 批准号:
16510174 - 财政年份:2004
- 资助金额:
$ 8.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modulation of synaptic functions by astrocytes
星形胶质细胞对突触功能的调节
- 批准号:
10214203 - 财政年份:1998
- 资助金额:
$ 8.65万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)