CEREBELLAR FUNCTION IN TREMOR
震颤时的小脑功能
基本信息
- 批准号:9977296
- 负责人:
- 金额:$ 33.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAgeAlcoholsAnimal ModelAreaAtaxiaBackBehaviorBinding ProteinsBody partBrainBrain regionCalcium SignalingCell physiologyCerebellar NucleiCerebellumCerebral cortexChronicDataDeep Brain StimulationDevicesDiagnosisDiseaseDisease modelDystoniaEatingElectrophysiology (science)Essential TremorExhibitsFire - disastersFrequenciesFunctional disorderGenesGeneticGenetic ModelsHealthHomologous GeneHumanITPR1 geneImpairmentInferiorInterneuronsLeadLocomotionMeasuresMotionMotorMotor CortexMovement DisordersMusMuscleMuscle functionMutant Strains MiceMutationNeuraxisNeurologicNeuronsOlives - dietaryOutputParkinson DiseasePathologicPatternPeriodicityPhysiologic pulsePhysiologyPre-Clinical ModelProcessPurkinje CellsResearchRestSignal TransductionSourceSpinocerebellar AtaxiasStructureSystemTestingThalamic structureTherapeuticTremorWalkingWireless TechnologyWorkexperimental studyhindbrainhuman modelimaging studyin vivointerdisciplinary approachmillisecondmotor function improvementmouse geneticsmouse modelmutantneuromechanismneuroregulationoptogeneticspreventreceptortherapeutic evaluation
项目摘要
PROJECT SUMMARY/ABSTRACT
Tremor is the most common movement disorder. It impairs voluntary actions by causing intense
shaking during walking, eating, and speaking. The shaking is repetitive and highly rhythmic as the
affected body parts “oscillate” back and forth. Oscillation frequency is a defining feature of tremor;
distinct tremors are found in Parkinson's disease, dystonia, and essential tremor (ET). Because
tremor disorders have a neurological basis, it implies that specific brain oscillations drive the body to
oscillate at the same frequency. However, it is still not clear where in the central nervous system the
oscillations begin, and the processes that lead to oscillations in the connected brain regions remain
unknown. In ET, which is the most prevalent form of pathological tremor, a hindbrain motor region
called the cerebellum has been heavily implicated as the major source of abnormal activity. But, how
abnormal cerebellar activity leads to oscillating motions has been challenging to test. This is largely
because of the lack of an appropriate animal model. To address this problem, we identified a mouse
genetic model that exhibits the core features of ET. We have generated compelling preliminary data
showing that the loss of a Purkinje cell gene, Car8, causes an ET-like tremor that mimics the human
condition in its frequency, progression with age, and responsiveness to alcohol. Here, we will expand
on this work by testing the hypothesis that loss of Car8 function causes cerebellar oscillations that
drive tremorgenic activity in the thalamocortical circuit. In our first aim, we will trace the path of the 4-
12Hz tremor oscillations from the cerebellum to the inferior olive, thalamus, and motor cortex in active
mice. We will therefore identify the major brain oscillators that contribute to ET pathophysiology. In
our second aim, we define the cellular origin of the tremor by testing if genetically and optogenetically
altering Purkinje cell firing modulates tremor in Car8 mice. Because cerebellar inhibitory interneurons
are also implicated in ET, we will also test if modulating their activity onto Purkinje cells influences
tremor. This experiment will address how local circuit wiring impacts network-wide oscillations. Next
we will take advantage of the robust connectivity of the cerebellar nuclei with the rest of the motor
system, plus the efficacy of deep brain stimulation (DBS). In our third aim, we will use the Car8 mice
to test whether the cerebellar nuclei are an effective target for DBS. We hypothesize that directing the
DBS to the cerebellar nuclei will prevent the spread of pathological oscillations away from the source.
The utility of Car8 as a preclinical model shows promise towards uncovering the mechanisms for how
DBS works. Our research has importance to human health because we introduce a multi-disciplinary
approach to study a broad spectrum of tremors that are all challenging to define, diagnose, and treat.
项目概要/摘要
震颤是最常见的运动障碍,它会引起强烈的自主行动。
走路、吃饭和说话时颤抖 颤抖是重复性的,并且有很强的节奏性。
受影响的身体部位来回“振动”,振动频率是震颤的一个明显特征。
帕金森病、肌张力障碍和特发性震颤 (ET) 中存在明显的震颤。
震颤症有神经学基础,这意味着特定的大脑振荡会驱动身体
然而,目前尚不清楚中枢神经系统中的哪个位置。
振荡开始,导致相连大脑区域振荡的过程仍然存在
在 ET 中,这是最常见的病理性震颤,是后脑运动区。
被称为小脑的大脑被认为是异常活动的主要来源。
异常的小脑活动导致振荡运动一直难以测试。
由于缺乏合适的动物模型,为了解决这个问题,我们确定了一种小鼠。
展示 ET 核心特征的遗传模型我们已经生成了令人信服的初步数据。
表明浦肯野细胞基因 Car8 的缺失会导致模仿人类的 ET 样震颤
在这里,我们将扩展其频率、随年龄的进展以及对酒精的反应。
在这项工作中,我们测试了 Car8 功能丧失会导致小脑振荡的假设,
驱动丘脑皮质回路中的震颤活动 在我们的第一个目标中,我们将追踪 4- 的路径。
活动时从小脑到下橄榄、丘脑和运动皮层的 12Hz 震颤振荡
因此,我们将确定导致 ET 病理生理学的主要脑振荡器。
我们的第二个目标是,通过测试遗传和光遗传学是否可以确定震颤的细胞起源
改变浦肯野细胞放电可调节 Car8 小鼠的震颤,因为小脑抑制性中间神经元。
也与 ET 有关,我们还将测试调节它们对浦肯野细胞的活性是否会产生影响
接下来,该实验将解决局部电路布线如何影响网络范围的振荡。
我们将利用小脑核与运动其余部分的强大连接
系统,加上深部脑刺激 (DBS) 的功效 在我们的第三个目标中,我们将使用 Car8 小鼠。
测试小脑核是否是 DBS 的有效目标。
对小脑核进行 DBS 将防止病理振荡远离源头传播。
Car8 作为临床前模型的实用性显示出揭示其机制的希望
DBS 的研究对人类健康具有重要意义,因为我们引入了多学科。
研究广泛的震颤的方法,这些震颤的定义、诊断和治疗都具有挑战性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roy Vincent Sillitoe其他文献
Roy Vincent Sillitoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roy Vincent Sillitoe', 18)}}的其他基金
2023 Cerebellum Gordon Research Conference and Gordon Research Seminar
2023年小脑戈登研究大会暨戈登研究研讨会
- 批准号:
10683616 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
2023 Cerebellum Gordon Research Conference and Gordon Research Seminar
2023年小脑戈登研究大会暨戈登研究研讨会
- 批准号:
10683616 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Spatial and temporal pathophysiology of developmental dystonia
发育性肌张力障碍的时空病理生理学
- 批准号:
10605284 - 财政年份:2022
- 资助金额:
$ 33.85万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
Development of a rapid screening test for the detection of dihydroanatoxin-a
开发检测二氢虾毒素-a 的快速筛选试验
- 批准号:
10545266 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
Mechanisms and manipulation of force dependent behavior in T cell biology
T 细胞生物学中力依赖性行为的机制和操纵
- 批准号:
10681766 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 33.85万 - 项目类别: