SCH: INT: Computational Tools for Avoidaint/Restrictive Food Intake Disorder
SCH:INT:避免/限制性食物摄入障碍的计算工具
基本信息
- 批准号:9927093
- 负责人:
- 金额:$ 25.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffectiveAlgorithmsAnxietyAssessment toolAttentionAwarenessBehavior TherapyBehavioralCaregiversChildChildhoodClinicClinicalCodeComorbidityComputer Vision SystemsDataData AnalysesData ScienceData SetDepressed moodDerivation procedureDevelopmentDiagnosisDietDiseaseDistressEatingEating DisordersEmotionalEmotionsEvolutionExposure toFaceFamilyFoodFood PatternsFood PreferencesFoundationsFriendsFrightFutureGeneral PopulationGoalsHealthHealth PersonnelHome environmentImageImpairmentIndividualIndustryInstructionInterventionLifeLinkLiteratureLonelinessLongevityLow incomeMachine LearningMapsMathematicsMeasuresMental disordersMonitorMotionMotivationParentsPerformancePhenotypePrimary Health CareProcessPsyche structureQuality of lifeReactionRecommendationResearchScientistSensorySeveritiesSmell PerceptionStandardizationStructureSuggestionSystemTaste aversionTimeTrainingTranslatingUncertaintyWorkanalytical toolbasebehavior changeclinically significantcomputerized toolsdesignexperiencefood avoidancefood consumptiongazeimprovedindexingmathematical algorithmmultimodal datanoveloutreachprecision medicinepreferenceprogramsrelating to nervous systemresponsescreeningsuccesssummer researchtoolundergraduate studentwastingwillingness
项目摘要
Intellectual Merit: This project will for the first time provide the fundamental tools to integrate unique
multimodal data toward screening, diagnosis, and intervention in eating disorders, with an initial focus on
children with ARFID and related developmental and health disorders. This work is critical for enriching the
understanding of healthy development and for broadening the foundations of behavioral data science.
ARFID ·motivates the development of new computer vision and data analysis tools critical for the analysis of
multidimensional behavioral data. The main aims are: 1. Develop and user individualized and integrated
continuous facial affect coding from videos to discern affective motivations for food avoidance, critical due
to the unique sensory aspects of eating disorders, and resulting from active stimulation via friendly and
carefully designed images/videos and real food presentation; 2. Use data analysis and machine learning to
derive sensory profiles based on patterns of food consumption and preference from existing unique
datasets of selective eaters; and 3. Translate the tools developed in Aims 1 and 2 into the clinic and home
to assess the capacity of these tools to define a threshold of clinically significant food avoidance, to detect
change in acceptability of food with repeated presentations, and to examine and modify the accuracy of our
food suggestion algorithms.
Broader Impacts: The impact of this application comprises two broad domains. First is the derivation of
processes, tools, and strategies to analyze very disparate data across multiple levels of analysis and to
codify those strategies to inform similar future work, in particular incorporating automatic behavioral coding.
Second is the exploitation of these tools to address questions about the emergence of healthy/unhealthy
food selectivity across the lifespan, including recommendation delivery via apps and at-home recordings.
The health impact of even partial success in this project is very broad and significant.
Undergraduate students will be involved in this project via the 6-weeks summer research program at the
Information Initiative at Duke, a center dedicated to the fundamentals of data science and its applications;
via the co-Pl's research lab devoted to eating disorders; and via the Pl's project dedicated to training
undergraduate students to address eating disorders of their friends via an anonymous app.
Outreach and dissemination will follow the broad use of the developed app, both in the clinic and the
general population, including the Pl's connections with low-income and under-represented bi-lingual preK.
RELEVANCE (See instructions):
Eating disorders are potentially life-threatening mental illnesses affecting the general population; -90% of
individuals never receive treatment, in part due to lack of awareness and access. Individuals with eating
disorders experience a diminished quality of life, high mental and physical illness comorbidities, and an
existence marked by profound loneliness and isolation. Combining expertise in eating disorders with
computer vision and machine learning, we bring for the first time data science to this health challenge.
PROJECT/PERFORMANCE S1TE(S) (If addItIonal space Is needed use Project/Performance Stte Format Page)
智力优势:该项目将首次提供集成独特的基本工具
用于饮食失调筛查、诊断和干预的多模式数据,最初重点是
这项工作对于丰富患有 ARFID 和相关发育和健康障碍的儿童至关重要。
了解健康发展并拓宽行为数据科学的基础。
ARFID·推动新计算机视觉和数据分析工具的开发,这对分析至关重要
主要目标是: 1. 开发和使用个性化和集成的数据。
从视频到避免食物的辨别动机的连续面部情感编码,关键原因
饮食失调的独特感官方面,是通过友好和积极的主动刺激而产生的
精心设计的图像/视频和真实的食物展示;2.利用数据分析和机器学习
根据食物消费模式和现有独特的偏好得出感官特征
选择性进食者的数据集;以及 3. 将目标 1 和 2 中开发的工具应用到诊所和家庭中
评估这些工具的能力,以定义临床上显着的食物避免的阈值,以检测
通过重复演示改变食品的可接受性,并检查和修改我们的准确性
食物建议算法。
更广泛的影响:该应用程序的影响包括两个广泛的领域:首先是推导。
跨多个分析级别分析非常不同的数据的流程、工具和策略
将这些策略编纂为类似的未来工作提供信息,特别是结合自动行为编码。
其次是利用这些工具来解决有关健康/不健康的出现的问题
整个生命周期的食物选择性,包括通过应用程序和家庭录音提供推荐。
即使该项目取得部分成功,对健康的影响也是非常广泛和重大的。
本科生将通过为期 6 周的暑期研究项目参与该项目
杜克大学信息倡议,一个致力于数据科学基础及其应用的中心;
通过 co-PL 致力于饮食失调的研究实验室以及通过 PL 致力于培训的项目;
本科生通过匿名应用程序解决朋友的饮食失调问题。
随着所开发的应用程序在诊所和医院的广泛使用,外展和传播将得到落实。
一般人群,包括 PL 与低收入和代表性不足的双语学前班的关系。
相关性(参见说明):
饮食失调是一种可能危及生命的精神疾病,影响普通人群;-90%
一些人从未接受过治疗,部分原因是缺乏饮食意识和途径。
疾病会导致生活质量下降、精神和身体疾病合并症较多,以及
以深刻的孤独和孤立为标志的存在,结合了饮食失调方面的专业知识。
计算机视觉和机器学习,我们首次将数据科学引入这一健康挑战。
项目/绩效 S1TE(S)(如果需要额外空间,请使用项目/绩效 Stte 格式页面)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUILLERMO R SAPIRO其他文献
GUILLERMO R SAPIRO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUILLERMO R SAPIRO', 18)}}的其他基金
Feeling and Body Investigators (FBI)-ARFID Division: Sensory and Somatic Exposure for Children with Avoidant Restrictive Food Intake Disorder
感觉和身体调查员 (FBI)-ARFID 部门:患有回避型限制性食物摄入障碍的儿童的感觉和躯体暴露
- 批准号:
10472736 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
Feeling and Body Investigators (FBI)-ARFID Division: Sensory and Somatic Exposure for Children with Avoidant Restrictive Food Intake Disorder
感觉和身体调查员 (FBI)-ARFID 部门:患有回避型限制性食物摄入障碍的儿童的感觉和躯体暴露
- 批准号:
10286200 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
Feeling and Body Investigators (FBI)-ARFID Division: Sensory and Somatic Exposure for Children with Avoidant Restrictive Food Intake Disorder
感觉和身体调查员 (FBI)-ARFID 部门:患有回避型限制性食物摄入障碍的儿童的感觉和躯体暴露
- 批准号:
10654708 - 财政年份:2021
- 资助金额:
$ 25.35万 - 项目类别:
SCH: INT: Computational Tools for Avoidaint/Restrictive Food Intake Disorder
SCH:INT:避免/限制性食物摄入障碍的计算工具
- 批准号:
10228145 - 财政年份:2019
- 资助金额:
$ 25.35万 - 项目类别:
SCH: INT: Computational Tools for Avoidaint/Restrictive Food Intake Disorder
SCH:INT:避免/限制性食物摄入障碍的计算工具
- 批准号:
10022332 - 财政年份:2019
- 资助金额:
$ 25.35万 - 项目类别:
SCH: INT: Computational Tools for Avoidaint/Restrictive Food Intake Disorder
SCH:INT:避免/限制性食物摄入障碍的计算工具
- 批准号:
10247759 - 财政年份:2019
- 资助金额:
$ 25.35万 - 项目类别:
CORRELATION OF FUNCTIONAL AND STRUCTURAL UNITS IN CEREBRAL CORTEX
大脑皮层功能和结构单元的相关性
- 批准号:
8362849 - 财政年份:2011
- 资助金额:
$ 25.35万 - 项目类别:
CORRELATION OF FUNCTIONAL AND STRUCTURAL UNITS IN CEREBRAL CORTEX
大脑皮层功能和结构单元的相关性
- 批准号:
8170454 - 财政年份:2010
- 资助金额:
$ 25.35万 - 项目类别:
CORRELATION OF FUNCTIONAL AND STRUCTURAL UNITS IN CEREBRAL CORTEX
大脑皮层功能和结构单元的相关性
- 批准号:
7954989 - 财政年份:2009
- 资助金额:
$ 25.35万 - 项目类别:
CORRELATION OF FUNCTIONAL AND STRUCTURAL UNITS IN CEREBRAL CORTEX
大脑皮层功能和结构单元的相关性
- 批准号:
7954989 - 财政年份:2009
- 资助金额:
$ 25.35万 - 项目类别:
相似国自然基金
地理场景与旅游情感的时空关联与影响机理研究
- 批准号:42301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
情感还是语义?表情符号对社交媒体旅游体验分享有用性的影响机理研究
- 批准号:72362009
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
算法规范对知识型零工在客户沟通中情感表达的动态影响调查:规范焦点理论视角
- 批准号:72302005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“云带货”助农主播对消费者购买行为的影响机理研究:基于情感体验的视角
- 批准号:72302230
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 25.35万 - 项目类别:
The Effect of Cytomegalovirus Infection on Daily Stress Processes in Early Adulthood
巨细胞病毒感染对成年早期日常应激过程的影响
- 批准号:
10678088 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Involvement of dopamine signaling in chronic pain-induced negative affective state and nicotine use comorbidity
多巴胺信号传导参与慢性疼痛引起的负面情感状态和尼古丁使用合并症
- 批准号:
10662951 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
Investigation of Digital Media Use, Anxiety, and Biobehavioral Emotion Regulation in Adolescents
青少年数字媒体使用、焦虑和生物行为情绪调节的调查
- 批准号:
10814547 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别:
The role of complement in chronic neuroinflammation and cognitive decline after closed head brain injury
补体在闭合性脑损伤后慢性神经炎症和认知能力下降中的作用
- 批准号:
10641096 - 财政年份:2023
- 资助金额:
$ 25.35万 - 项目类别: