Molecular Mechanisms of Lipopolysaccharide Transport Driven by ABC Transporters
ABC转运蛋白驱动脂多糖转运的分子机制
基本信息
- 批准号:9923673
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP-Binding Cassette TransportersAmino AcidsAnimalsAntibioticsArchitectureBacteriaBiochemicalBiogenesisCarrier ProteinsCell membraneChargeComplexCryoelectron MicroscopyCytoplasmDetergentsDevelopmentEnvironmentEscherichia coliGTP-Binding Protein alpha Subunits, GsGenerationsGlycolipidsGram-Negative BacteriaHost DefenseHydrophobicityInnate Immune ResponseLengthLigationLipid ALipidsLipopolysaccharide Biosynthesis PathwayLipopolysaccharidesMediatingMembraneModelingMolecularMolecular ConformationNamesNucleotidesNutrientO AntigensOligosaccharidesPathway interactionsPenetrationPermeabilityPlayPoisonPolymersPolysaccharidesProductionProteinsRegulationResolutionRoleSeriesSideStructureTechniquesTransmembrane Transportconformational conversioninnovationinsightnanodisc technologynanodisknovelparticlepathogenperiplasmprotein complexreconstitutionsuccesssugar
项目摘要
ABSTRACT
Lipopolysaccharide (LPS) is present in the outer membrane of most Gram-negative bacteria, and plays
a key role in constructing a proper cellular envelope for bacteria to survive in harsh environments. The
tight packing of LPS in the outer membrane generates a network of charges and sugars, which selectively
allow the entry of nutrient molecules, while limit the penetration of toxic compounds including detergents
and antibiotics. Due to its critical importance in the biogenesis of bacterial membrane barrier, LPS
biosynthesis and transport pathway is a particularly interesting target for developing novel antibiotics.
LPS is also crucial in the host-pathogen interactions, and functions as a potent activator of innate immune
response in the animals. LPS is a complex and highly variable glycolipid, composed of a lipid A moiety,
a core oligosaccharide and a long-chain O-antigenic polysaccharide. The structure of lipid A and core
oligosaccharide are relatively conserved, presumably due to their roles in maintaining the integrity of
permeability barrier. In contrast, the O-antigen of LPS shows hypervariable structures, which is consistent
with their functions in interacting with the outside environment and host defense.
Gram-negative bacteria devote a large amount of energy and a sophisticated protein machinery to the
efficient and proper production, transport and assembly of LPS molecules. The synthesis of LPS starts
at the interface between the cytoplasm and the inner membrane, leading to the generation of lipid A-core
oligosaccharide, also called rough LPS, which resides in the inner leaflet of the inner membrane. Rough
LPS is flipped across the inner membrane by an ATP binding cassette (ABC) transporter, MsbA. The
rough LPS in the periplasmic leaflet is further added with various lengths and forms of O-antigen,
becoming a “smooth” LPS. For the LPS transport across the periplasm and to the outer membrane, seven
proteins named as Lpt A-G are involved. Several lines of evidence converge to suggest a model, in which
the Lpt proteins form a continuous bridge connecting the two membranes. The ABC transporter, formed
as LptB2FG, is thought to extract the LPS molecules from the inner membrane, and transport them to the
tightly associated bitopic LptC, and to the periplasmic LptA. Multiple LptA proteins may form a continuous
bridge to reach the LptDE complex in the outer membrane, which mediates the LPS insertion into the
outer leaflet of the outer membrane. Here we propose a series of structural and functional studies on the
LPS transport protein machinery using a variety of biochemical and cryo-EM techniques. A molecular
understanding on the function and regulation of the LPS transport pathway will contribute to the
understanding of the biogenesis of the outer membrane of many Gram-negative bacteria, and also aid
the development of novel antibiotics that directly target the bacterial membrane barrier.
抽象的
脂多糖(LPS)存在于大多数革兰氏阴性细菌的外膜中,发挥着重要作用。
在构建细菌在恶劣环境中生存的适当细胞膜方面发挥着关键作用。
LPS 在外膜中紧密堆积,产生电荷和糖网络,选择性地
允许营养分子进入,同时限制有毒化合物(包括清洁剂)的渗透
由于 LPS 在细菌膜屏障的生物发生中至关重要。
生物合成和转运途径是开发新型抗生素的一个特别有趣的目标。
LPS 在宿主与病原体的相互作用中也至关重要,并且是先天免疫的有效激活剂
LPS 是一种复杂且高度可变的糖脂,由脂质 A 部分组成,
核心寡糖和长链O-抗原多糖 脂质A和核心的结构。
寡糖相对保守,可能是由于它们在维持寡糖完整性方面的作用
相反,LPS 的 O 抗原显示出高变结构,这是一致的。
具有与外部环境相互作用和宿主防御的功能。
革兰氏阴性细菌投入大量能量和复杂的蛋白质机器来
LPS 分子的高效且正确的生产、运输和组装开始 LPS 的合成。
位于细胞质和内膜之间的界面,导致脂质 A 核心的产生
寡糖,也称为粗脂多糖,存在于粗内膜的内小叶中。
LPS 通过 ATP 结合盒 (ABC) 转运蛋白 MsbA 翻转穿过内膜。
周质小叶中的粗LPS进一步添加了各种长度和形式的O-抗原,
成为“平滑”的 LPS 对于 LPS 穿过周质并到达外膜的运输,七个。
一些名为 Lpt A-G 的蛋白质参与其中,多项证据共同提出了一个模型,其中
Lpt 蛋白形成连接两个膜的连续桥,形成 ABC 转运蛋白。
LptB2FG 被认为可以从内膜中提取 LPS 分子,并将它们转运到
紧密相关的双位LptC和周质LptA蛋白可形成连续的。
桥到达外膜中的 LptDE 复合物,介导 LPS 插入
在这里,我们提出了一系列关于外膜的结构和功能的研究。
LPS 使用多种生化和冷冻电镜分子技术运输蛋白质。
对 LPS 转运途径的功能和调节的了解将有助于
了解许多革兰氏阴性细菌外膜的生物发生,也有助于
直接针对细菌膜屏障的新型抗生素的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maofu Liao其他文献
Maofu Liao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maofu Liao', 18)}}的其他基金
Molecular Mechanisms of Lipopolysaccharide Transport Driven by ABC Transporters
ABC转运蛋白驱动脂多糖转运的分子机制
- 批准号:
9285126 - 财政年份:2017
- 资助金额:
$ 33.9万 - 项目类别:
相似国自然基金
基于超声多模态评价技术探讨肝脏靶向递送ABCA1新策略在动脉粥样硬化防治中的应用
- 批准号:81871357
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于SIRT1-LXR通路的化合物E4023抗动脉粥样硬化的作用及机制研究
- 批准号:81703503
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于LXRα-SREBP1-ABCA1/G1信号通路的益气活血化痰方调脂抗动脉粥样硬化机制研究
- 批准号:81774088
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
肝脏X受体激动剂干预β淀粉样蛋白诱导的视网膜炎性反应的作用及机制
- 批准号:81670881
- 批准年份:2016
- 资助金额:51.0 万元
- 项目类别:面上项目
新型ABCA1上调剂E17241改善糖脂代谢紊乱的机制研究
- 批准号:81573482
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Studies of P-glycoprotein Drug Interactions - Administrative Supplement for Undergraduate Summer Research
P-糖蛋白药物相互作用的研究 - 本科生暑期研究行政补充
- 批准号:
10810072 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Molecular Mechanisms of The Human Mitochondrial ABC Transporter ABCB10
人类线粒体 ABC 转运蛋白 ABCB10 的分子机制
- 批准号:
10596638 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Studies of P-glycoprotein Drug Interactions - Administrative Supplement for Equipment Purchase
P-糖蛋白药物相互作用研究-设备采购行政补充
- 批准号:
10795338 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别: