Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
基本信息
- 批准号:9923630
- 负责人:
- 金额:$ 71.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAutomobile DrivingBehaviorBiological ModelsBreast Cancer cell lineBreast Epithelial CellsCRISPR libraryCancer Cell GrowthCellsClustered Regularly Interspaced Short Palindromic RepeatsComplexComputer ModelsDNA Sequence AlterationDataDevelopmentDiseaseDrug resistanceFeedbackFlow CytometryGene DosageGene ExpressionGene MutationGene ProteinsGenerationsGenesGeneticLeadLibrariesLinkMachine LearningMalignant NeoplasmsMapsMeasurementMeasuresMethodologyMethodsModelingModernizationMolecularMutateMutationNormal CellPathway interactionsPatternPharmaceutical PreparationsPhenotypePhosphorylationPlayPredictive Cancer ModelProteinsProteomicsProto-Oncogene Proteins c-aktReagentRegulationResearchResistanceRoleSignal PathwaySignal TransductionSystems BiologyTechniquesTechnologyTestingTherapeutic InterventionTranslatingWorkbasecancer cellcancer typecell behaviordesignexperimental studymathematical modelmelanomanovel strategiespersonalized medicinephosphoproteomicspredictive modelingproteomic signatureresponsescreeningtargeted treatmenttool
项目摘要
Title: Reverse Sensitivity Analysis for Identifying Proteomics Signatures of Cancer
Abstract
Cancer is a complex disease in which genetic disruptions in cell signaling networks are known to play a
significant role. A major aim of cancer systems biology is to build models that can predict the impact of these
genetic disruptions to guide therapeutic interventions (i.e. personalized medicine). A prominent driver of
cancer cell growth is signaling pathway deregulation from mutations in key regulatory nodes and loss/gain in
gene copy number (CNV). However, current mathematical modeling approaches do not adequately capture the
impact of these genetic changes. Reasons for this include the poorly understood layers of regulation between
gene expression and protein activity, and limitations in most modeling and protein measurement technologies.
In addition, there is a paucity of overarching hypotheses that can link specific gene expression or mutation
patterns to the cancer phenotype. Recent work by our group has resolved some of the technical challenges that
have hindered the application of proteomics technologies to cancer systems biology research. It has also
suggested a new approach for using quantitative proteomics data to understand mechanisms driving cancer
cell behavior. Using an ultrasensitive, targeted proteomics platform that can measure both abundance and
phosphorylation of proteins present at only hundreds of copies per cell, we found that signaling pathways
appeared to be controlled by only a limited number of key nodes whose activity is tightly regulated through low
abundance and feedback phosphorylation. We propose to build on these findings by critically testing the
hypothesis that CNV and genetic mutations dysregulate signaling pathways in cancer by shifting control
from tightly regulated nodes to poorly regulated ones. This will be done by systematically identifying key
regulatory nodes of normal and cancer cells using CRISPRa/i screens, determine the relationship between
protein abundance and signaling pathway activities using ultrasensitive targeted proteomics and
phosphoproteomics and then use these data to semi-automatically generate mathematical models of the
functional topology of the signaling pathways. Specifically, we propose to: 1) Use targeted CRISPR gene
perturbation libraries to identify the regulatory topologies of signaling pathways important in cancer and how
they are disrupted by common cancer mutations, 2) Use the CRISPR perturbation and proteomics data to
semi-automatically build predictive models of cancer cell signaling pathways, and 3) Combine modeling and
perturbation screens to understand how feedback regulation in cancer contributes to drug resistance. This
work will result in simplified, computationally tractable yet mechanistic models of signaling pathways and
provide network maps of feedback and crosstalk circuits that can be used to rapidly map the regulatory state of
cells. Most important, it will provide a generic platform for translating protein abundance and phosphorylation
patterns into a “state” snapshot of cancers that can lead to predicting their response to specific drugs.
标题:识别癌症蛋白质组学特征的反向敏感性分析
抽象的
癌症是一种复杂的疾病,已知细胞信号网络中的遗传破坏会产生影响
癌症系统生物学的一个主要目标是建立可以预测这些影响的模型。
指导治疗干预的遗传破坏(即个性化医疗)的一个重要驱动因素。
癌细胞的生长是信号通路因关键调控节点突变和缺失/增加而失调的过程。
然而,当前的数学建模方法并不能充分捕获基因拷贝数(CNV)。
这些基因变化的影响的原因包括人们对它们之间的调控层次知之甚少。
基因表达和蛋白质活性,以及大多数建模和蛋白质测量技术的局限性。
此外,缺乏可以将特定基因表达或突变联系起来的总体假设
我们小组最近的工作解决了一些技术挑战。
也阻碍了蛋白质组学技术在癌症系统生物学研究中的应用。
提出了一种使用定量蛋白质组学数据来了解癌症驱动机制的新方法
使用超灵敏的靶向蛋白质组学平台,可以测量丰度和细胞行为。
每个细胞中蛋白质的磷酸化仅存在数百个拷贝,我们发现信号通路
似乎仅由有限数量的关键节点控制,这些节点的活动通过低
我们建议通过严格测试这些发现来构建丰度和反馈磷酸化。
假设 CNV 和基因突变通过转移控制来失调癌症中的信号通路
从严格监管的节点到监管不力的节点,这将通过系统地识别关键节点来完成。
使用 CRISPRa/i 筛选正常细胞和癌细胞的调节节点,确定之间的关系
使用超灵敏靶向蛋白质组学和
磷酸蛋白质组学,然后使用这些数据半自动生成数学模型
具体来说,我们建议:1)使用靶向CRISPR基因。
扰动库来识别癌症中重要的信号通路的调控拓扑以及如何
它们受到常见癌症突变的干扰,2) 使用 CRISPR 扰动和蛋白质组学数据
半自动构建癌细胞信号通路的预测模型,以及 3) 将建模与
扰动筛选以了解癌症中的反馈调节如何导致耐药性。
这项工作将产生简化的、计算上易于处理的信号通路机械模型
提供反馈和串扰电路的网络图,可用于快速映射调节状态
最重要的是,它将提供一个用于翻译蛋白质丰度和磷酸化的通用平台。
将模式转化为癌症的“状态”快照,从而可以预测癌症对特定药物的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei-Jun Qian其他文献
Wei-Jun Qian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei-Jun Qian', 18)}}的其他基金
Robust Mass Spectrometric Protein/Peptide Assays for Type 1 Diabetes Clinical Applications
适用于 1 型糖尿病临床应用的稳健质谱蛋白质/肽检测
- 批准号:
10730900 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10238054 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
9918021 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
- 批准号:
10615630 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Reverse Sensitivity Analysis for Identifying Predictive Proteomics Signatures of Cancer
用于识别癌症预测蛋白质组学特征的反向敏感性分析
- 批准号:
10395957 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10448306 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
Multiplex Mass Spectrometric Protein Assays for Precise Monitoring of the Pathophysiology of Obesity
用于精确监测肥胖病理生理学的多重质谱蛋白质分析
- 批准号:
10020391 - 财政年份:2019
- 资助金额:
$ 71.57万 - 项目类别:
相似国自然基金
基于lncRNA NONHSAT042241/hnRNP D/β-catenin轴探讨雷公藤衍生物(LLDT-8)对类风湿关节炎滑膜成纤维细胞功能影响及机制研究
- 批准号:82304988
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针刺手法和参数对针刺效应启动的影响及其机制
- 批准号:82305416
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二仙汤影响肾上腺皮质-髓质激素分泌及调控下丘脑温度感受器以缓解“天癸竭”潮热的研究
- 批准号:82374307
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
- 批准号:52371327
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济制裁对跨国企业海外研发网络建构的影响:基于被制裁企业的视角
- 批准号:72302155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
- 批准号:
10751224 - 财政年份:2024
- 资助金额:
$ 71.57万 - 项目类别:
Development of a SYF2 antisense oligonucleotide treatment for ALS and FTD
开发治疗 ALS 和 FTD 的 SYF2 反义寡核苷酸
- 批准号:
10547625 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别:
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 71.57万 - 项目类别: