Structural basis for caveolae assembly and function
小窝组装和功能的结构基础
基本信息
- 批准号:9925038
- 负责人:
- 金额:$ 52.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acute Lung InjuryAddressArchitectureAsthmaBindingBiochemicalBiogenesisBiological AssayBiologyBlood VesselsCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCaveolaeCell membraneCell physiologyCellsChronicComplexComputer SimulationCryoelectron MicroscopyDataDefectDimensionsDiseaseElectron MicroscopyEnsureFluorescence PolarizationFluorescence SpectroscopyGoalsHandHomeostasisInflammatoryKnowledgeLinkLipidsLiteratureLungLung diseasesMalignant neoplasm of lungMapsMembraneMembrane ProteinsModelingMutationProtein RegionProteinsPulmonary FibrosisResearch PersonnelResolutionShapesSignal TransductionStructureSurfaceSystemTestingVariantcaveolin 1cell typeflasksinsightmonomerpersonalized medicinepulmonary arterial hypertensionpulmonary functionsingle moleculestoichiometrythree dimensional structuretrafficking
项目摘要
Flask-shaped invaginations of the plasma membrane known as caveolae are important regulators of the
cardiovascular and pulmonary systems. The membrane protein caveolin-1 (Cav1) is a major structural
component of caveolae and is required for their formation in non-muscle cells. Cav1 is highly expressed in the
lung, and has been linked to lung cancer, asthma, pulmonary fibrosis, pulmonary arterial hypertension, chronic
inflammatory respiratory diseases, and acute lung injury. Cav1 is also known to regulate vascular homeostasis
and was recently identified as one of 15 key drivers of cardiovascular disease. However, the exact
mechanisms by which caveolae form and function normally, and how defects in caveolae give rise to disease
remain incompletely understood.
One of the greatest impediments to our understanding of how caveolae assemble and function is our limited
knowledge about how Cav1 is packed within caveolae. The goal of this proposal is to address this major gap
in knowledge by defining the atomic-level structure of Cav1 oligomers that are known to serve as the
fundamental building blocks of caveolae. To do so, we will utilize a combination of biochemical and
spectroscopic approaches, single molecule electron microscopy, cell biological assays, and computational
modeling to study purified Cav1 oligomeric complexes. One specific aim is to define the overall architecture of
Cav1 oligomers and identify key determinants of their structure and stoichiometry. Another aim is to map the
three-dimensional organization of Cav1 within these oligomers and define structural changes in the protein
associated with the monomer to oligomer transition. The results of these studies will enable us to answer a
number of long-standing questions in the field, including how Cav1 monomers oligomerize to form complexes,
what structural features of Cav1 are required for the protein to bend membranes, how Cav1 complexes interact
amongst themselves to build caveolae, and what regions of Cav1 are available to bind other proteins and
lipids. These insights will be key to furthering our understanding of how Cav1 and caveolae regulate cellular
functions that are critical to ensure proper function of the cardiovascular and pulmonary systems. Finally, our
studies will also have important implications for personalized medicine by providing a structural framework for
understanding how both common variants and disease-associated mutations of Cav1 impact the structure and
function of caveolae.
!
质膜的烧瓶状内陷(称为小凹)是重要的调节因子
心血管和肺部系统。膜蛋白 Caveolin-1 (Cav1) 是一种主要的结构蛋白
小凹的组成部分,是非肌肉细胞形成所必需的。 Cav1 高度表达于
肺,与肺癌、哮喘、肺纤维化、肺动脉高压、慢性
炎症性呼吸道疾病和急性肺损伤。 Cav1 还可以调节血管稳态
最近被确定为心血管疾病的 15 个关键驱动因素之一。然而,确切的
小凹形成和正常发挥功能的机制,以及小凹缺陷如何引起疾病
仍然不完全理解。
我们理解小窝如何组装和发挥作用的最大障碍之一是我们的有限性
关于 Cav1 如何包装在小凹内的知识。该提案的目标是解决这一重大差距
通过定义 Cav1 低聚物的原子级结构来获得知识,这些低聚物被认为是
小窝的基本组成部分。为此,我们将结合使用生化和
光谱方法、单分子电子显微镜、细胞生物学测定和计算
建模以研究纯化的 Cav1 寡聚复合物。一个具体目标是定义整体架构
Cav1 寡聚物并确定其结构和化学计量的关键决定因素。另一个目标是绘制地图
这些寡聚物中 Cav1 的三维组织并定义蛋白质的结构变化
与单体到低聚物的转变有关。这些研究的结果将使我们能够回答一个问题
该领域长期存在的一些问题,包括 Cav1 单体如何寡聚形成复合物,
Cav1 的哪些结构特征需要蛋白质弯曲膜,Cav1 复合物如何相互作用
Cav1 的哪些区域可用于结合其他蛋白质和
脂质。这些见解对于进一步了解 Cav1 和小窝如何调节细胞至关重要
对于确保心血管和肺系统的正常功能至关重要的功能。最后,我们的
研究还将通过提供一个结构框架对个性化医疗产生重要影响。
了解 Cav1 的常见变异和疾病相关突变如何影响结构和
小凹的功能。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne K Kenworthy其他文献
Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2
与 1 型和 2 型糖尿病的分泌病理学有关的不同胰岛素颗粒亚群
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:7.7
- 作者:
Alex J. B. Kreutzberger;V. Kiessling;Catherine A Doyle;Noah A. Schenk;Clint M Upchurch;Margaret M. Elmer;Amanda E. Ward;Julia Preobraschenski;Syed S Hussein;W. Tomaka;Patrick Seelheim;Iman Kattan;Megan T. Harris;B. Liang;Anne K Kenworthy;Bimal N. Desai;N. Leitinger;Arun Anantharam;J. D. Castle;L. Tamm - 通讯作者:
L. Tamm
Anne K Kenworthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne K Kenworthy', 18)}}的其他基金
Structure and Function of Non-Conventional Caveolins
非常规小窝蛋白的结构和功能
- 批准号:
10638902 - 财政年份:2023
- 资助金额:
$ 52.77万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10474445 - 财政年份:2020
- 资助金额:
$ 52.77万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10250522 - 财政年份:2020
- 资助金额:
$ 52.77万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10029455 - 财政年份:2020
- 资助金额:
$ 52.77万 - 项目类别:
Roles of Cholesterol and Membrane Nanodomains in the Amyloidogenic Pathway
胆固醇和膜纳米结构域在淀粉样蛋白生成途径中的作用
- 批准号:
9333750 - 财政年份:2017
- 资助金额:
$ 52.77万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
9403684 - 财政年份:2013
- 资助金额:
$ 52.77万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
8843013 - 财政年份:2013
- 资助金额:
$ 52.77万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
9925238 - 财政年份:2013
- 资助金额:
$ 52.77万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
8700425 - 财政年份:2013
- 资助金额:
$ 52.77万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 52.77万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 52.77万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 52.77万 - 项目类别:
Endothelial cell signaling in regeneration of the lung
肺再生中的内皮细胞信号传导
- 批准号:
10506642 - 财政年份:2022
- 资助金额:
$ 52.77万 - 项目类别:
Endothelial cell signaling in regeneration of the lung
肺再生中的内皮细胞信号传导
- 批准号:
10689111 - 财政年份:2022
- 资助金额:
$ 52.77万 - 项目类别: