Microvascular endothelial Kir channels in flow-induced dilation and hypertension
微血管内皮 Kir 通道在血流引起的扩张和高血压中的作用
基本信息
- 批准号:9917815
- 负责人:
- 金额:$ 62.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-19 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AKT1 geneAddressAnti-Inflammatory AgentsArteriesBiologyBlood PressureBlood VesselsBlood flowCardiovascular DiseasesCell membraneChargeComplexCouplesCouplingDataDepressed moodDevelopmentDiseaseElementsEndothelial CellsEndotheliumEventGenerationsGeneticGlycocalyxGoalsHarvestHeparitin SulfateHumanHypertensionImpairmentIn VitroInvestigationKDR geneKnock-outLinkMediatingMembraneMicrocirculationModelingMorbidity - disease rateMusNOS3 geneNitric OxideNitric Oxide SynthasePTEN genePatientsPhosphatidylinositol 4,5-DiphosphatePhospholipidsPhosphoric Monoester HydrolasesPhosphorylationPlayPotassium ChannelProductionProtein-Serine-Threonine KinasesRecoveryRecovery of FunctionRegulationRelaxationResearch DesignResistanceRoleSignal PathwaySignal TransductionTestingVascular Endothelial CellVasodilationVasodilator Agentsbaseblood pressure regulationcohortfunctional losshemodynamicsinsightinward rectifier potassium channelmechanotransductionmortalitymouse modelnoveloverexpressionprehypertensionrecruitresponsesensorshear stresssyndecanvascular endothelial dysfunctionvirtual
项目摘要
Abstract:
Flow-induced vasodilation (FIV) is a hallmark of the endothelial response to flow and an
essential mechanism for the control of blood flow to the microcirculation. It is well established
that a key mechanism responsible for FIV is generation of nitric oxide (NO). Our recent study
discovered that FIV and flow-induced generation of NO in resistance arteries of mice and
humans critically depend on endothelial inwardly-rectifying K+ channels (Kir2.1). We also
established that Kir2.1 regulate endothelial NO synthase (eNOS) via a serine/threonine kinase
Akt1. This was particularly interesting and important because Kir channels have long been
known to be sensitive to shear stress but their role in endothelial responses to flow remained
unknown. The goals of this proposal are to determine the mechanisms by which Kir2.1 channels
couple hemodynamic shear stress forces to activation of endothelial NO synthase (eNOS) and
NO production and to evaluate the role of endothelial Kir channels in vasoreactivity of human
vessels in hypertension. Our first aim is to elucidate the mechanism responsible for the
sensitivity of Kir2.1 channels to shear stress, which is currently completely unknown. Our
preliminary data show that flow-sensitivity of Kir2.1 is abrogated by enzymatic degradation of
Heparan Sulphate (HS)-Glycocalyx and reduced in ECs isolated from Sydecan1-/- mice. We
propose, therefore, that flow-induced activation of Kir channels is mediated by the endothelial
Glycocalyx, specifically Syndecan-1, and possibly other elements of HS-Glycocalyx. We also
propose that Kir2.1 interacts directly with Syndecan-1, and elucidate the mechanism of this
interaction. Our second aim focuses on the mechanism that couples Kir2.1 to the downstream
Akt1 signaling pathway. It is well-known that flow-induced activation of AKT1 requires its
translocation and recruitment to the membrane via association with a phospholipid PIP3. We
propose that Kir enhances the association of Akt1 with PIP3 and thus facilitates its recruitment
to the membrane, resulting in increased Akt1 phosphorylation. We also explore the possibilities
that flow-induced activation of Kir2.1 may regulate the upstream events, such as activation PI3K
and its recruitment to VEGFR2 mechanosensing complex or inhibit a phosphatase PTEN that
converts PIP3 to PIP2. This signaling mechanism is explored in primary endothelial cells and in
intact resistance arteries freshly-harvested from mice. A new endothelial-specific inducible
mouse model of Kir2.1 deficiency has been generated in our lab to achieve these goals. In aim
3, we propose to test the hypothesis that microvascular endothelial Kir function is depressed
during human hypertension. This aim is based on our preliminary data showing decreased
contribution of Kir2.1 to FIV in a pilot cohort of hypertensive patients. In this study, we will recruit
3 groups of subjects that include patients with pre-hypertension or stage 1 hypertension and
healthy controls. We will also determine whether the loss of Kir2.1 contribution to FIV should be
attributed to the loss of the functional expression of Kir2.1 channels or to their impaired coupling
to the downstream signaling. Finally, we will also determine whether impaired FIV in
hypertensive patients may be rescued by restoring Kir2.1 activity.
抽象的:
血流诱导血管舒张 (FIV) 是内皮细胞对血流反应的标志,
控制微循环血流的重要机制。已经很完善了
导致 FIV 的一个关键机制是一氧化氮 (NO) 的产生。我们最近的研究
发现 FIV 和血流诱导小鼠阻力动脉中 NO 的产生
人类严重依赖内皮内向整流 K+ 通道 (Kir2.1)。我们也
确定 Kir2.1 通过丝氨酸/苏氨酸激酶调节内皮 NO 合酶 (eNOS)
Akt1。这是特别有趣和重要的,因为 Kir 通道长期以来一直存在
已知对剪切应力敏感,但它们在内皮对血流反应中的作用仍然存在
未知。该提案的目标是确定 Kir2.1 通道的机制
将血流动力学剪切应力与内皮一氧化氮合酶 (eNOS) 的激活相耦合
NO 产生并评估内皮 Kir 通道在人类血管反应性中的作用
高血压中的血管。我们的首要目标是阐明造成这一现象的机制
Kir2.1 通道对剪切应力的敏感性,目前完全未知。我们的
初步数据表明,Kir2.1 的流量敏感性被酶降解所消除。
硫酸乙酰肝素 (HS)-糖萼并在从 Sydecan1-/- 小鼠中分离的 EC 中减少。我们
因此,提出流动诱导的 Kir 通道激活是由内皮细胞介导的
Glycocalyx,特别是 Syndecan-1,可能还有 HS-Glycocalyx 的其他元素。我们也
提出Kir2.1直接与Syndecan-1相互作用,并阐明其机制
相互作用。我们的第二个目标集中于Kir2.1与下游的耦合机制
Akt1 信号通路。众所周知,流动诱导的 AKT1 激活需要其
通过与磷脂 PIP3 结合易位并募集到膜上。我们
提出 Kir 增强 Akt1 与 PIP3 的关联,从而促进其招募
到膜上,导致 Akt1 磷酸化增加。我们也探索各种可能性
流动诱导的 Kir2.1 激活可能调节上游事件,例如激活 PI3K
及其招募到 VEGFR2 机械传感复合物或抑制磷酸酶 PTEN
将 PIP3 转换为 PIP2。在原代内皮细胞和
从小鼠身上新鲜采集的完整抵抗动脉。一种新的内皮特异性诱导物
我们的实验室已经建立了 Kir2.1 缺陷小鼠模型来实现这些目标。瞄准目标
3、我们提出检验微血管内皮Kir功能被抑制的假设
在人类高血压期间。这一目标是基于我们的初步数据显示减少
Kir2.1 在高血压患者试点队列中对 FIV 的贡献。在本研究中,我们将招募
3 组受试者,包括高血压前期或 1 期高血压患者
健康的控制。我们还将确定 Kir2.1 对 FIV 贡献的损失是否应该
归因于 Kir2.1 通道功能表达的丧失或其耦合受损
到下游信令。最后,我们还将确定 FIV 是否受损
高血压患者可以通过恢复 Kir2.1 活性来挽救。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Levitan其他文献
Irena Levitan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Levitan', 18)}}的其他基金
Cholesterol Regulation of Endothelial K+ Channels
内皮 K 通道的胆固醇调节
- 批准号:
10836797 - 财政年份:2022
- 资助金额:
$ 62.74万 - 项目类别:
Microvascular endothelial Kir channels in flow-induced dilation and hypertension
微血管内皮 Kir 通道在血流引起的扩张和高血压中的作用
- 批准号:
10392398 - 财政年份:2019
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7492115 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7877943 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7643248 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
7321162 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
9789917 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
10201709 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
Impact of dyslipidemia on endothelial biomechanics
血脂异常对内皮生物力学的影响
- 批准号:
9041643 - 财政年份:2007
- 资助金额:
$ 62.74万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
- 批准号:
10750690 - 财政年份:2024
- 资助金额:
$ 62.74万 - 项目类别:
Novel mechanisms of muscle and bone loss with HIV infection, antiretroviral therapy, and aging.
HIV 感染、抗逆转录病毒治疗和衰老导致肌肉和骨质流失的新机制。
- 批准号:
10696502 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Developing Therapeutic Gel Embolic Agents for Arteriovenous Malformation Embolization
开发用于动静脉畸形栓塞治疗的凝胶栓塞剂
- 批准号:
10667726 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
A First-in-class Topical Immunoregulatory Therapeutic for Psoriasis
一流的牛皮癣局部免疫调节疗法
- 批准号:
10820331 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别:
Bionanomatrix coating to enhance antibacterial effects while reducing inflammation of knee joint implants
生物纳米基质涂层可增强抗菌效果,同时减少膝关节植入物的炎症
- 批准号:
10822220 - 财政年份:2023
- 资助金额:
$ 62.74万 - 项目类别: