Digital High Resolution Melt and Machine Learning for Rapid and Specific Diagnosis in Neonatal Sepsis

数字高分辨率熔解和机器学习用于新生儿败血症的快速和特异性诊断

基本信息

项目摘要

Project Summary Blood culture sensitivity in neonates is poor but is the “Gold Standard” for the diagnosis of sepsis. Universal genotyping of pathogen genomic sequences using High Resolution Melt (U-HRM) provides a simple, low cost, rapid, and modern alternative to blood culture testing. By measuring the fluorescence of an intercalating dye as PCR-amplified pathogen DNA fragments are heated and disassociate, sequence defined melt curves are generated with single-nucleotide resolution in a closed-tube reaction. We have advanced U- HRM into a digital PCR format (U-dHRM), where DNA sequences that are present in mixtures are individually amplified and identified as is needed for polymicrobial infections. We have also established unique signature melt curves for 37 bacterial species that commonly infect older children and adults and automatically identify them using machine learning technology. With the goal of creating an accurate and valid test for the timely diagnosis of neonatal sepsis, we will advance this technology to identify unique fungal, viral, and bacterial HRM signatures along with antibiotic resistance genes with an accuracy of 99-100% on minimal blood volume (1mL). Our aims are: Aim 1. Optimize and assess the U-dHRM platform for neonatal bacteremia diagnosis by expand our bacterial database (13 additional bacteria) to detect causes of >99% of neonatal bacterial infections, expand our antibiotic resistance gene database to include five clinically actionable genes, and assessing the performance of the system for bacteremia diagnosis in mock and clinical whole blood samples; Aim 2. Advance the U-dHRM platform for simultaneous detection of fungal and viral pathogens by upgrading our optical system to enable expansion to fungal and viral detection in a high-throughput format, multiplexing the assay to expand to viral and fungal pathogens causing >99% non-bacterial infections, and conducting analytical validation of the multiplexed platform using mock whole blood samples; and Aim 3. Advance the machine learning algorithm for detection of emerging pathogens by developing and integrating an anomaly detection algorithm for reporting emerging pathogens that are not included in our database and validating the algorithm using data generated in Aims 1 and 2. Thus, this proposal directly addresses the funding call by applying a multidisciplinary approach to overcome the biomedical challenge of rapidly diagnosis sepsis, a hidden public health disaster.
项目概要 新生儿的血培养敏感性较差,但却是诊断败血症的“金标准”。 使用高分辨率熔解 (U-HRM) 对病原体基因组序列进行通用基因分型提供了一种简单、 通过测量荧光来替代血培养检测,成本低、快速、现代。 当 PCR 扩增的病原体 DNA 片段被加热并解离时插入染料,序列已确定 我们拥有先进的 U- 闭管反应,以单核苷酸分辨率生成熔解曲线。 HRM 转换为 PCR 数字格式 (U-dHRM),其中混合物中存在的 DNA 序列是单独的 我们还根据多种微生物感染的需要进行了扩增和鉴定。 37 种细菌的熔解曲线,这些细菌通常感染年龄较大的儿童和成人,并自动识别 他们使用机器学习技术,目标是及时创建准确有效的测试。 新生儿败血症的诊断,我们将推进这项技术来识别独特的真菌、病毒和细菌 HRM 特征以及抗生素抗性基因,最小血容量的准确度为 99-100% (1mL)。我们的目标是: 目标 1. 优化和评估用于新生儿菌血症诊断的 U-dHRM 平台。 扩展我们的细菌数据库(另外 13 种细菌)以检测 > 99% 的新生儿细菌的原因 感染,扩大我们的抗生素耐药性基因数据库,包括五个临床上可行的基因,以及 评估模拟和临床全血样本中菌血症诊断系统的性能; 目标 2. 通过升级推进 U-dHRM 平台,同时检测真菌和病毒病原体 我们的光学系统能够以高通量格式、多重检测扩展到真菌和病毒检测 该测定扩展到导致 > 99% 非细菌感染的病毒和真菌病原体,并进行 使用模拟全血样本对多重平台进行分析验证;目标 3. 推进 通过开发和集成异常来检测新出现的病原体的机器学习算法 检测算法,用于报告未包含在我们数据库中的新出现的病原体并验证 算法使用目标 1 和 2 中生成的数据。因此,该提案直接解决了资金需求 应用多学科方法克服快速诊断脓毒症的生物医学挑战, 隐藏的公共卫生灾难。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Irene Fraley其他文献

Stephanie Irene Fraley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Irene Fraley', 18)}}的其他基金

A rapid test for congenital syphilis screening
先天性梅毒筛查的快速检测
  • 批准号:
    10385576
  • 财政年份:
    2022
  • 资助金额:
    $ 48.62万
  • 项目类别:
Project 2: Functional Genetic Networks for Systems-Guided Precision Medicine
项目 2:系统引导精准医学的功能遗传网络
  • 批准号:
    10704609
  • 财政年份:
    2022
  • 资助金额:
    $ 48.62万
  • 项目类别:
Project 2: Functional Genetic Networks for Systems-Guided Precision Medicine
项目 2:系统引导精准医学的功能遗传网络
  • 批准号:
    10525589
  • 财政年份:
    2022
  • 资助金额:
    $ 48.62万
  • 项目类别:
Project 2: Functional Genetic Networks for Systems-Guided Precision Medicine
项目 2:系统引导精准医学的功能遗传网络
  • 批准号:
    10704609
  • 财政年份:
    2022
  • 资助金额:
    $ 48.62万
  • 项目类别:
Digital High Resolution Melt and Machine Learning for Rapid and Specific Diagnosis in Neonatal Sepsis
数字高分辨率熔解和机器学习用于新生儿败血症的快速和特异性诊断
  • 批准号:
    9794293
  • 财政年份:
    2018
  • 资助金额:
    $ 48.62万
  • 项目类别:
Digital High Resolution Melt and Machine Learning for Rapid and Specific Diagnosis in Neonatal Sepsis
数字高分辨率熔解和机器学习用于新生儿败血症的快速和特异性诊断
  • 批准号:
    10394878
  • 财政年份:
    2018
  • 资助金额:
    $ 48.62万
  • 项目类别:

相似国自然基金

基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
  • 批准号:
    82372499
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
  • 批准号:
    82373465
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
  • 批准号:
    82300208
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
  • 批准号:
    82302025
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
  • 批准号:
    82302160
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
  • 批准号:
    10639360
  • 财政年份:
    2023
  • 资助金额:
    $ 48.62万
  • 项目类别:
Pilot Testing Implementation of Suicide Risk Prediction Algorithms to Support Suicide Prevention in Primary Care
试点测试自杀风险预测算法的实施,以支持初级保健中的自杀预防
  • 批准号:
    10648772
  • 财政年份:
    2023
  • 资助金额:
    $ 48.62万
  • 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
  • 批准号:
    10667700
  • 财政年份:
    2023
  • 资助金额:
    $ 48.62万
  • 项目类别:
SCH: Artificial Intelligence enabled multi-modal sensor platform for at-home health monitoring of patients
SCH:人工智能支持的多模式传感器平台,用于患者的家庭健康监测
  • 批准号:
    10816667
  • 财政年份:
    2023
  • 资助金额:
    $ 48.62万
  • 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 48.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了