Reverse Engineering Quantitative Genetic Variation
逆向工程定量遗传变异
基本信息
- 批准号:9915941
- 负责人:
- 金额:$ 45.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-23 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAgricultureAllelesAnimalsBehavior DisordersBehavioralBiological ModelsBiologyBreedingCRISPR/Cas technologyChillsCodeComaComplexControlled EnvironmentDNA SequenceDNA ShufflingDevelopmentDiseaseDrosophila melanogasterEngineeringEnvironmentExhibitsFemaleFutureGene ExpressionGenesGeneticGenetic PolymorphismGenetic TranscriptionGenetic VariationGenotypeGoalsHumanHuman BiologyInbreedingIndividualIntercistronic RegionIntronsLaboratoriesLinkage DisequilibriumMapsMediatingMedicineMolecularMolecular GeneticsMorphologyPharmacologyPhenotypePhysiologicalPlantsPopulationPositioning AttributePredispositionQuantitative GeneticsQuantitative Trait LociRecoveryRegulator GenesRiskSamplingStreamStressSystemTechnologyTestingTimeVariantcausal variantfarmers marketsfitnessgenetic approachgenetic architecturegenetic variantgenome wide association studygenome-widehuman diseaselife historymalemolecular phenotypenervous system developmentnovelpleiotropismprecision medicinerare variantresponsesextrait
项目摘要
PROJECT SUMMARY
Risk for most human diseases is attributable to segregating alleles at many interacting genes with
environmentally sensitive effects. Future developments towards personalized precision medicine require a
predictive understanding of how DNA sequence variants give rise to phenotypic variation through modulation
of regulatory gene networks. This is challenging in human populations because variants associated with
complex traits are embedded in relatively large local linkage disequilibrium (LD) blocks, within which
segregating molecular polymorphisms are not independent. Thus, these variants are not necessarily causal,
but could be in LD with the true common or rare causal variant(s) within the same LD block. Furthermore, the
majority of variants associated with complex traits are in intergenic regions, up- or down-stream of coding
regions, or in introns. These variants are presumably regulatory and affect variation in gene expression.
Formally proving the causal relationships between molecular genetic variation, genetic variation in gene
expression and other intermediate molecular phenotypes, and genetic variation in quantitative trait phenotypes
is not possible in human populations. The Drosophila melanogaster Genetic Reference Panel (DGRP) was
generated in our laboratories and consists of 205 inbred, sequenced lines derived from single inseminated
females collected from the Raleigh, NC Farmer’s Market. We have used the DGRP to perform genome wide
association (GWA) mapping for many organismal quantitative traits as well as genome wide gene expression,
which has generated testable hypotheses about the genotype-phenotype map, including sex-, genetic
background- and environment-specific effects. The precision of GWA mapping in the DGRP is excellent
because of rapid local decline of LD with physical distance. Here, we propose to test these hypotheses using
CRISPR/Cas9 mediated precise allelic replacement to functionally validate (1) additive, epistatic and
environment-specific effects of common variants that affect chill coma recovery time; (2) pleiotropic, epistatic
and environment-specific effects of rare variants; and (3) novel transcribed regions (NTRs) and cis-trans
transcriptional networks, and evaluate their effects on genome-wide expression and quantitative traits. These
proposed studies will enable us to evaluate the direct and pleiotropic effects of common and rare variants, in
both genic and intergenic regions, that are shared and distinct between males and females, both with respect
to organismal quantitative trait phenotypes as well as genome wide gene expression. We will be able to
explicitly evaluate the existence and magnitude of epistatic interactions for organismal phenotypes and gene
expression traits and create “designer” genotypes between epistatically interacting alleles in defined genetic
backgrounds. These studies will greatly advance our understanding of how subtle naturally occurring molecular
variation impacts gene expression and organismal phenotypes.
项目概要
大多数人类疾病的风险归因于许多相互作用基因的等位基因与
环境敏感效应的未来发展需要个性化精准医疗。
预测性了解 DNA 序列变异如何通过调节引起表型变异
这在人类群体中具有挑战性,因为变异与
复杂性状嵌入相对较大的局部连锁不平衡(LD)块中,其中
分离的分子多态性不是独立的,因此,这些变异不一定是因果关系。
但可能与同一 LD 块内真正常见或罕见的因果变异处于 LD 中。此外,
大多数与复杂性状相关的变异位于基因间区域,编码的上游或下游
这些变异可能是调节性的并影响基因表达的变异。
正式证明分子遗传变异、基因遗传变异之间的因果关系
表达和其他中间分子表型,以及数量性状表型的遗传变异
果蝇遗传参考面板 (DGRP) 是不可能的。
在我们的实验室中产生,由 205 个来自单次授精的近交、测序品系组成
从北卡罗来纳州罗利农贸市场收集的雌性我们使用 DGRP 进行全基因组分析。
许多生物数量性状以及全基因组基因表达的关联(GWA)图谱,
它产生了关于基因型-表型图的可检验的假设,包括性别、遗传
DGRP 中的 GWA 映射的精度非常出色。
由于 LD 随物理距离的局部快速下降,我们建议使用这些假设来检验。
CRISPR/Cas9 介导精确的等位基因替换,以在功能上验证 (1) 加性、上位性和
(2) 多效性、上位性
和罕见变异的环境特异性影响;以及(3)新的转录区域(NTR)和顺反式
转录网络,并评估它们对全基因组表达和数量性状的影响。
拟议的研究将使我们能够评估常见和罕见变异的直接和多效性影响,
基因和基因间区域,在男性和女性之间共享和不同,都尊重
我们将能够了解生物数量性状表型以及全基因组基因表达。
明确评估生物表型和基因上位相互作用的存在和程度
表达特征并创建“设计者”基因型,在定义的遗传中上位等位基因之间相互作用
这些研究将极大地增进我们对自然发生的分子的微妙程度的理解。
变异影响基因表达和生物表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert R. H Anholt其他文献
Robert R. H Anholt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert R. H Anholt', 18)}}的其他基金
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10681415 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10437098 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Genetic Basis of Lifespan and Healthspan Extension by ACE Inhibition in Drosophila
果蝇 ACE 抑制延长寿命和健康寿命的遗传基础
- 批准号:
10681415 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728206 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728209 - 财政年份:2021
- 资助金额:
$ 45.39万 - 项目类别:
Reverse Engineering Quantitative Genetic Variation
逆向工程定量遗传变异
- 批准号:
9769077 - 财政年份:2018
- 资助金额:
$ 45.39万 - 项目类别:
Genetics of Cocaine and Methamphetamine Sensitivity in Drosophila
果蝇可卡因和甲基苯丙胺敏感性的遗传学
- 批准号:
10164745 - 财政年份:2017
- 资助金额:
$ 45.39万 - 项目类别:
相似国自然基金
战略与管理研究类:农业水资源高效利用与智慧管控发展战略研究
- 批准号:52342904
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
过去6000年菲律宾吕宋岛早期农业发展及孢粉揭示的热带土地覆被变化
- 批准号:42377442
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
考虑农户合作形式与风险偏好的农业补贴机制设计研究
- 批准号:72301193
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
同伴压力对农民参与农业项目行为的影响:基于风险态度和模糊态度传导的实验经济学研究
- 批准号:72363004
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
相似海外基金
Molecular basis of adaptation in a chemosensory system
化学感应系统适应的分子基础
- 批准号:
10768995 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Molecular basis of adaptation in a chemosensory system
化学感应系统适应的分子基础
- 批准号:
10410734 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Analysis of homolog-based CRISPR editing in somatic cells
体细胞中基于同源物的 CRISPR 编辑分析
- 批准号:
10676726 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Analysis of homolog-based CRISPR editing in somatic cells
体细胞中基于同源物的 CRISPR 编辑分析
- 批准号:
10343429 - 财政年份:2022
- 资助金额:
$ 45.39万 - 项目类别:
Analysis of transcription factors determining azole resistance of Aspergillus fumigatus
烟曲霉唑类抗性转录因子分析
- 批准号:
10664888 - 财政年份:2019
- 资助金额:
$ 45.39万 - 项目类别: