Single Molecule Dynamics of mRNA Translation
mRNA 翻译的单分子动力学
基本信息
- 批准号:7666905
- 负责人:
- 金额:$ 30.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmino Acyl Transfer RNABenchmarkingBindingCell physiologyCellsChloramphenicol O-AcetyltransferaseCodeCodon NucleotidesCollectionComputer softwareCouplingDihydrofolate ReductaseEEF1A1 geneElementsEscherichia coliEvaluationFluorescenceFluorescence MicroscopyFluorescence Resonance Energy TransferGenetic TranslationGoalsHeightIndiumKineticsLabelLengthLocationMessenger RNAMethodsMicroscopeModelingMolecular ProfilingMonitorMutationPeptidesPhotobleachingPlayProceduresProcessProtein BiosynthesisProteinsQuantum DotsReagentRecoveryRegulationRelative (related person)ResearchRibosomesRoleSilent MutationSiteSpeedStructureSuggestionSystemTimeTransfer RNATranslatingTranslationsWorkdesignhelicaseimage processingimprovedinsightinstrumentationinterestmutantprotein foldingpublic health relevancesingle moleculesingle-molecule FRETstem
项目摘要
DESCRIPTION (provided by applicant): Our goal is exploit the power of single molecule observation to elucidate the mechanism by which specific sequences within mRNA modulate the rate of translation by E. coli ribosomes, through use of an approach coupling Total Internal Reflection Fluorescence Microscopy (TIRFM) with Fluorescence Resonance Energy Transfer (FRET). In our approach, fluorescent groups are introduced in the ribosome that, by FRET interaction with fluorescently-labeled tRNAs, allow initial aminoacyl-tRNA binding to the ribosomal A-site, tRNA translocation to the P-site, and release of discharged tRNA from the E-site to be monitored on single ribosomes in real time. This approach will provide a detailed, continuous kinetic profile of mRNA translation during continuous elongation, providing unique insights into the regulation of translation rates in protein synthesis that are important for cell function. We will determine kinetic profiles for expression of i) short model mRNAs containing known pausing elements regulating translation; ii) complete mRNAs coding for full proteins; and iii) designed mutations of such mRNAs that permit rigorous evaluation of the effects of pausing elements, singly or in groups, in the context of full protein synthesis. Such determinations will allow new understanding of the roles such pauses play in biologically important processes and providing suggestions for optimizing cell-free protein synthesis systems. Our specific aims are to: 1. Determine translation profiles for model mRNAs. We will determine translation kinetic profiles for model mRNAs incorporating known pausing elements (rare codons, downstream mRNA 2o structure, upstream nascent peptides) either one at a time or in tandem. The information obtained will quantify effects of such elements on translation and elucidate the mechanism of the intrinsic ribosomal helicase. 2. Determine translation rates for full-length mRNAs. We will determine translation kinetic profiles for full length mRNAs and specifically designed mutants of such mRNAs in order to determine how surrounding context influences the effect of a given pausing element or group of pausing elements on translation rate, beginning with the mRNAs coding for E. coli dihydrofolate reductase (DHFR) and chloramphenicol acetyltransferase (CATIII). 3. Optimize the reagents employed in the TIRFM-FRET approach. The principal improvements over currently available reagents will be directed toward i. reducing background from fluorescently-labeled tRNA by derivatizing EF-Tu with a fluorescence quencher; ii. synthesizing a larger variety of fluorescent tRNAs; and iii. labeling ribosomes with quantum dots for increased stability toward photobleaching. 4. Optimize the apparatus and methods needed for the TIRFM-FRET approach. Several improvements to the apparatus, software and procedures will be accomplished to enable collection of long kinetic sequences from the onset of elongation, with high fidelity and minimum perturbation by photobleaching. The image processing software used to quantify single molecule FRET pairs and their efficiencies will be improved, optimized and statistically validated. PUBLIC HEALTH RELEVANCE: Three major consequences will flow from our work. First, we will be able to examine the effects of known translational pausing elements in the context of complete protein chain expression, and to determine if new elements and synergistic effects can be identified. Second, we will be able to systematically explore the role translational pausing plays in the integration of protein synthesis and cellular function, focusing on such issues as the tradeoff between speed and accuracy in translation at functionally crucial residues, and the possible coupling of translational pausing and co-translational protein folding. Third, we will be able to provide important information with respect to optimizing cell-free protein translation systems.
描述(由申请人提供):我们的目标是利用单分子观察的力量,通过使用耦合全内反射荧光显微镜的方法来阐明 mRNA 内的特定序列调节大肠杆菌核糖体翻译速率的机制( TIRFM)与荧光共振能量转移(FRET)。在我们的方法中,荧光基团被引入核糖体中,通过与荧光标记的 tRNA 的 FRET 相互作用,允许最初的氨酰基-tRNA 与核糖体 A 位点结合,tRNA 易位至 P 位点,并从核糖体中释放排出的 tRNA。对单个核糖体进行实时监测的电子站点。这种方法将提供连续延伸过程中 mRNA 翻译的详细、连续的动力学特征,为对细胞功能很重要的蛋白质合成中翻译速率的调节提供独特的见解。我们将确定 i) 含有已知调节翻译的暂停元件的短模型 mRNA 的表达动力学特征; ii) 编码完整蛋白质的完整 mRNA; iii) 设计此类 mRNA 的突变,允许在完整蛋白质合成的背景下严格评估单个或成组的暂停元件的影响。这些测定将使人们对此类暂停在生物学重要过程中所起的作用有新的了解,并为优化无细胞蛋白质合成系统提供建议。我们的具体目标是: 1. 确定模型 mRNA 的翻译概况。我们将确定包含已知暂停元件(稀有密码子、下游 mRNA 2o 结构、上游新生肽)的模型 mRNA 的翻译动力学特征,一次一个或串联。获得的信息将量化这些元素对翻译的影响并阐明内在核糖体解旋酶的机制。 2. 确定全长 mRNA 的翻译率。我们将确定全长 mRNA 和专门设计的此类 mRNA 突变体的翻译动力学曲线,以确定周围环境如何影响给定暂停元件或暂停元件组对翻译速率的影响,从编码大肠杆菌的 mRNA 开始二氢叶酸还原酶(DHFR)和氯霉素乙酰转移酶(CATIII)。 3. 优化TIRFM-FRET方法中使用的试剂。对当前可用试剂的主要改进将针对 i。通过用荧光猝灭剂衍生 EF-Tu 来减少荧光标记 tRNA 的背景;二.合成更多种类的荧光 tRNA;和 iii.用量子点标记核糖体以提高光漂白的稳定性。 4. 优化TIRFM-FRET方法所需的仪器和方法。将完成对设备、软件和程序的几项改进,以实现从伸长开始时收集长动力学序列,具有高保真度和最小的光漂白干扰。用于量化单分子 FRET 对的图像处理软件及其效率将得到改进、优化和统计验证。公共卫生相关性:我们的工作将产生三个主要后果。首先,我们将能够在完整蛋白链表达的背景下检查已知翻译暂停元件的影响,并确定是否可以识别新元件和协同效应。其次,我们将能够系统地探索翻译暂停在蛋白质合成和细胞功能整合中的作用,重点关注功能关键残基翻译速度和准确性之间的权衡,以及翻译暂停和翻译暂停之间可能的耦合等问题。共翻译蛋白质折叠。第三,我们将能够提供有关优化无细胞蛋白质翻译系统的重要信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY S. COOPERMAN其他文献
BARRY S. COOPERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY S. COOPERMAN', 18)}}的其他基金
Catalytic roles of RNA methyltransferase DIMT1
RNA甲基转移酶DIMT1的催化作用
- 批准号:
10522085 - 财政年份:2022
- 资助金额:
$ 30.1万 - 项目类别:
Catalytic roles of RNA methyltransferase DIMT1
RNA甲基转移酶DIMT1的催化作用
- 批准号:
10643980 - 财政年份:2022
- 资助金额:
$ 30.1万 - 项目类别:
Fluorescent tRNAs for Real-Time Monitoring of Protein Synthesis in Living Cells
用于实时监测活细胞中蛋白质合成的荧光 tRNA
- 批准号:
8001799 - 财政年份:2010
- 资助金额:
$ 30.1万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Investigating the Role of Seryl-tRNA Synthetase in Mitochondrial Biology and Human Recessive Disease
研究 Seryl-tRNA 合成酶在线粒体生物学和人类隐性疾病中的作用
- 批准号:
10750183 - 财政年份:2023
- 资助金额:
$ 30.1万 - 项目类别:
A cell model of YARS2-associated childhood-onset mitochondrial disease
YARS2 相关的儿童期发病线粒体疾病的细胞模型
- 批准号:
10575369 - 财政年份:2023
- 资助金额:
$ 30.1万 - 项目类别:
Investigating the pathomechanisms underlying Charcot-Marie-Tooth Disease
研究腓骨肌萎缩症的病理机制
- 批准号:
10541701 - 财政年份:2022
- 资助金额:
$ 30.1万 - 项目类别:
Investigating the pathomechanisms underlying Charcot-Marie-Tooth Disease
研究腓骨肌萎缩症的病理机制
- 批准号:
10658862 - 财政年份:2022
- 资助金额:
$ 30.1万 - 项目类别:
The physiological activation and consequences of Toxin-Antitoxin systems in Salmonella
沙门氏菌毒素-抗毒素系统的生理激活和后果
- 批准号:
10418802 - 财政年份:2021
- 资助金额:
$ 30.1万 - 项目类别: