Biodegradable Piezoelectric Scaffold for Bone regeneration
用于骨再生的可生物降解压电支架
基本信息
- 批准号:9913470
- 负责人:
- 金额:$ 21.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcoustic StimulationAcousticsAdhesivesAdipose tissueAlginatesAreaBiocompatible MaterialsBiological AssayBone GrowthBone RegenerationBone TransplantationCaliberCalvariaCartilageCell ProliferationCell SurvivalCellsChargeChemicalsClinicalControl GroupsDefectDevicesElectric StimulationElectricityElementsEngineeringExcisionFDA approvedFilmFractureFutureGene ProteinsGoalsGrowth FactorHistologicHydrogelsImmuneImplantIn VitroInfectionMechanicsMedicalMethodsMorbidity - disease rateMusMuscleNatural regenerationNatureNerveOperative Surgical ProceduresOrthopedic Surgery proceduresOsteogenesisPerformancePolymersProcessProteinsReportingResearch PersonnelRoentgen RaysSeedsSiteSkinStainsSurfaceTestingThickTimeTissue EngineeringTissuesUltrasonographyabsorptionbasebiomaterial compatibilitybonebone engineeringbone growth factorbone healingcell growthcomparison groupcraniumdesignhealingimplantable devicein vivomechanical loadmicroCTmineralizationmouse modelnanofibernovelnovel strategiesosteogenicplacebo grouppoly-L-lactic acidpolyvinylidene fluoridepressureprotein expressionreconstructionregenerativerepairedresponsescaffoldside effectsmall moleculestemstem cell differentiationstem cellstissue support frame
项目摘要
Biodegradable Piezoelectric Scaffold for Bone Regeneration
Reconstruction of large bone fractures and defects remains a big challenge in orthopaedic surgery.
Replacement auto- or allo-grafts usually suffer from the problems of limited supply, donor site morbidity,
infection or/and immune-rejection. Regenerative engineering strategies, employing a combination of
biomaterial scaffolds, stem/osteogenic cells and growth factors/small molecules, has therefore emerged as an
important area.
Although bone growth factors and small molecules are powerful, many of their toxic side-effects demand for a
new approach to stimulate bone growth. Electrical stimulation (ES) is an excellent alternative and many
electrical stimulators have been used to treat bone fractures. However, the electrical devices still struggle with
limitations; while external stimulators are not very effective, implanted devices rely on toxic and non-
degradable batteries, requiring invasive removal surgery.
Piezoelectric materials, a group of “smart” materials which can generate electricity under applied force, might
offer compelling battery-less stimulators to electrically stimulate bone growth. Bone is also piezoelectric in
nature. Under deformation, bone generates surface charge, which drives the tissue to grow against the applied
force. A piezoelectric scaffold can therefore mimic natural bone in receiving mechanical loading to induce bone
growth and regeneration. Here we propose for the first time a novel biodegradable and biocompatible
scaffold of piezoelectric nanofibers of PLLA (Poly-L-lactide), which will be seeded with stem cells and
subjected to acoustic pressure from ultrasound, to generate useful electrical charge for enhanced
bone regeneration. We will assemble multiple layers of electrospun piezoelectric PLLA nanofiber films and
employ adipose stem cells (ASCs) to construct the 3D piezoelectric scaffold. Accordingly, the project has two
main specific aims; Aim 1 is to assess osteogenesis from ASCs seeded on the 3D biodegradable piezoelectric
PLLA nanofiber scaffold under stimulation of acoustic pressure in vitro. And Aim 2 is to demonstrate the use of
our constructed scaffold to heal critical-sized calvarial/skull defects in mice under stimulation of acoustic
pressure.
Milestone: The milestone of this project after 1 year is to find out suitable acoustic stimulation and
demonstrate an enhanced osteogenesis from the stem-cells, seeded on our piezoelectric PLLA scaffold, in
vitro. After 2 years, the milestone of this project is to demonstrate a significant bone ingrowth on implanted
piezoelectric PLLA scaffolds to heal the calvarial defects in mice. As electrical stimulation is applicable to
versatile tissues (e.g. nerve, muscle, skin, cartilage etc.), we anticipate the proposed scaffold will become a
platform to construct different engineered tissues with an enhanced regenerative capability.
用于骨再生的可生物降解压电支架
大面积骨折和缺损的重建仍然是骨科手术中的一大挑战。
替代自体或同种异体移植物通常会遇到供应有限、供体部位发病率、
感染或/和免疫排斥,采用组合的再生工程策略。
因此,生物材料支架、干/成骨细胞和生长因子/小分子已成为一种
重要领域。
尽管骨生长因子和小分子很强大,但它们的许多毒副作用需要
刺激骨骼生长的新方法 电刺激 (ES) 是一种很好的替代方法。
电刺激器已被用于治疗骨折,但是,电刺激器仍然存在一些问题。
局限性;虽然外部刺激器不是很有效,但植入设备依赖于有毒和非
可降解电池,需要进行侵入性切除手术。
压电材料是一组可以在外力作用下发电的“智能”材料,
提供引人注目的无电池刺激器来电刺激骨骼生长。骨骼也是压电的。
在变形的情况下,骨骼会产生表面电荷,从而驱动组织逆着所施加的力生长。
因此,压电支架可以模仿天然骨接受机械载荷以诱导骨。
在这里,我们首次提出了一种新型的可生物降解和生物相容性。
PLLA(聚左旋丙交酯)压电纳米纤维支架,将接种干细胞和
受到超声波声压的作用,产生有用的电荷,以增强
我们将组装多层静电纺压电 PLLA 纳米纤维薄膜并进行骨再生。
利用脂肪干细胞(ASC)构建3D压电支架因此,该项目有两个。
主要具体目标;目标 1 是评估接种在 3D 可生物降解压电材料上的 ASC 的成骨作用
PLLA 纳米纤维支架在体外声压刺激下的用途。
我们构建的支架可在声学刺激下治愈小鼠临界尺寸的颅骨/颅骨缺损
压力。
里程碑:一年后这个项目的里程碑是找到合适的声学刺激和
证明了接种在我们的压电 PLLA 支架上的干细胞增强的成骨作用,
两年后,该项目的里程碑是证明了植入后骨的显着向内生长。
压电 PLLA 支架可治愈小鼠颅骨缺损,因为电刺激适用于该支架。
多功能组织(例如神经、肌肉、皮肤、软骨等),我们预计所提出的支架将成为
平台构建具有增强再生能力的不同工程组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thanh Nguyen其他文献
Thanh Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thanh Nguyen', 18)}}的其他基金
Novel Piezoelectric Amino-acid Ultrasound Transducer to Deliver Drugs Through the Blood Brain Barrier
新型压电氨基酸超声换能器通过血脑屏障输送药物
- 批准号:
10636328 - 财政年份:2023
- 资助金额:
$ 21.22万 - 项目类别:
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
- 批准号:
10342706 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10425794 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Biodegradable Piezoelectric Nanocomposite Scaffold with Physical Exercise to Heal Major Cartilage Defects in Large Animals
可生物降解的压电纳米复合支架与体育锻炼可治愈大型动物的主要软骨缺陷
- 批准号:
10634516 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10721752 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Single-administration microneedles with controlled sustained release of non-opioid analgesics to treat osteoarthritis pain
单次给药微针控制缓释非阿片类镇痛药治疗骨关节炎疼痛
- 批准号:
10618335 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Real-time Measurement of Joint-loading for Osteoarthritis Study and Treatment R21AR078744
用于骨关节炎研究和治疗的关节负荷实时测量 R21AR078744
- 批准号:
10362159 - 财政年份:2021
- 资助金额:
$ 21.22万 - 项目类别:
Real-time measurement of joint-loading for osteoarthritis study and treatment
实时测量关节负荷,用于骨关节炎研究和治疗
- 批准号:
10359757 - 财政年份:2021
- 资助金额:
$ 21.22万 - 项目类别:
Real-time measurement of joint-loading for osteoarthritis study and treatment
实时测量关节负荷,用于骨关节炎研究和治疗
- 批准号:
10566872 - 财政年份:2021
- 资助金额:
$ 21.22万 - 项目类别:
Biodegradable and Biocompatible Piezoelectric Nanofiber Mat for Wound Dressing
用于伤口敷料的可生物降解和生物相容性压电纳米纤维垫
- 批准号:
10220853 - 财政年份:2020
- 资助金额:
$ 21.22万 - 项目类别:
相似国自然基金
成骨细胞的听觉感应
- 批准号:31570943
- 批准年份:2015
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 21.22万 - 项目类别:
High-resolution bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的高分辨率双向光声介观神经接口
- 批准号:
10407380 - 财政年份:2022
- 资助金额:
$ 21.22万 - 项目类别:
Toward Clinical Translation of Acoustic Angiography: Optimization of Microvascular Ultrasound Imaging on a Novel Dual-frequency Array
声学血管造影的临床转化:新型双频阵列微血管超声成像的优化
- 批准号:
9979626 - 财政年份:2019
- 资助金额:
$ 21.22万 - 项目类别:
Bidirectional optical-acoustic mesoscopic neural interface for image-guided neuromodulation in behaving animals
用于行为动物图像引导神经调节的双向光声介观神经接口
- 批准号:
10117461 - 财政年份:2018
- 资助金额:
$ 21.22万 - 项目类别:
Reduction of Intracochlear Trauma and Fibrosis Using Dual Network, Zwitterionic Hydrogel Thin Films on Cochlear Implant Surfaces
使用人工耳蜗表面上的双网络两性离子水凝胶薄膜减少耳蜗内创伤和纤维化
- 批准号:
10659699 - 财政年份:2013
- 资助金额:
$ 21.22万 - 项目类别: