Estimating Cholera Burden with Cross-sectional Immunologic Data
用横截面免疫学数据估计霍乱负担
基本信息
- 批准号:9912094
- 负责人:
- 金额:$ 66.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-25 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAfricaAntibodiesAntibody ResponseAreaBangladeshBangladeshiBiological AssayBloodCaringCessation of lifeCholeraCholera VaccineClinicalCollaborationsComputer ModelsComputing MethodologiesCountryDataDecision MakingDemographic FactorsDetectionDevelopmentDevicesDiarrheaDiseaseDisease OutbreaksDisease SurveillanceEnrollmentEpidemicEpidemiologyExposure toFundingFutureGenerationsGeneticHaitiHaitianHealth care facilityHealth systemHouseholdImmune responseImmunologicsImmunologyIncidenceIndividualInfectionInfrastructureInterventionJointsKineticsLaboratoriesLateralLinkLogisticsMeasurementMeasuresMethodsMicrobiologyModelingNatureOralPatientsPopulationPopulations at RiskPredispositionReportingResearch InfrastructureResearch PersonnelResourcesRiskRuralSanitationSensitivity and SpecificitySerologicalSerumSpecificitySpottingsStandardizationSurveillance MethodsSystemTimeTranslationsUncertaintyUnited States National Institutes of HealthVibrio choleraeVibrio cholerae O1Vibrio cholerae infectionWaterage relatedbasecohortdiarrheal diseasedisorder riskfightinghigh riskimprovedinsightmachine learning methodnovelpathogenpredictive modelingstatistical and machine learningstatisticstool
项目摘要
Project Summary/Abstract
Cholera is an acute dehydrating diarrheal disease caused by infection with Vibrio cholerae. It is endemic in
over 50 countries, affecting up to 3 million people and causing more than 100,000 deaths annually. A renewed
global effort to fight cholera is underway, catalyzed by the large on-going epidemic in Haiti and now aided by
new generation oral cholera vaccines. Identifying key populations at high risk of cholera is essential to guide
these activities. Current methods to estimate cholera burden are largely based on clinical reporting with
infrequent microbiological confirmation. These methods are limited by the sporadic nature of outbreaks, poor
surveillance infrastructure, and fundamental uncertainties in the number of asymptomatic or mildly
symptomatic cases. Improved methods of detecting cholera exposure and risk are urgently needed. Detection
of immune responses in serum (serosurveillance) can provide a new avenue for rapid and accurate estimates
of cholera exposure and risk. We currently do not understand what immunological and clinical parameters are
most predictive of recent exposure, nor whether immune responses in areas with different levels of endemicity
are similar. In preliminary studies, we have used machine learning methods on antibody response data from
cholera patients in Bangladesh to classify whether individuals had been exposed in the previous 30-, 90-, or
360-days with high sensitivity and specificity. In this application, we propose to use longitudinal antibody
response kinetics, from populations with diverse genetic and epidemiologic profiles, paired with novel statistical
and machine learning approaches to provide generalizable tools to estimate the incidence of exposure to
Vibrio cholerae from cross sectional serosurveys. In Aim 1, we will develop models to estimate the time since
exposure to Vibrio cholerae and exposure incidence from cross-sectional antibody profiles and demographic
data using previously collected data from a cohort in Bangladesh. These results will allow us to identify the
antibodies and demographic factors that are most useful for prediction of time-since-exposure. In Aim 2, we will
collect longitudinal antibody data from a cohort of cholera cases and household contacts in Haiti to develop
models for estimating exposure incidence from cross-sectional serosurveillance. This cohort will also enable us
to compare the models developed for moderate/severe cases and mild/asymptomatic cases. In Aim 3, we will
optimize and validate field-adapted methods to measure cholera-specific antibodies, including the use of dried
blood spot and lateral flow assays. We will conduct a proof-of-concept cross-sectional serosurvey using these
methods in rural Haiti. Upon the completion of these aims, we will have provided a number of new tools for
measure of susceptibility to cholera in a population. These tools will have the potential to transform cholera
control efforts from the current reactive strategies to proactive ones, with the potential to contribute to disease
elimination.
项目概要/摘要
霍乱是由霍乱弧菌感染引起的一种急性脱水性腹泻病。它流行于
50 多个国家,影响多达 300 万人,每年造成超过 10 万人死亡。一个更新的
在海地当前大规模流行病的推动下,全球抗击霍乱的努力正在进行中,现在得到了援助
新一代口服霍乱疫苗。确定霍乱高危人群对于指导霍乱至关重要
这些活动。目前估计霍乱负担的方法主要基于临床报告
很少进行微生物学确认。这些方法受到疫情的零星性、较差的
监测基础设施以及无症状或轻度症状人数的基本不确定性
有症状的病例。迫切需要改进检测霍乱暴露和风险的方法。检测
血清中的免疫反应(血清监测)可以为快速准确的估计提供新途径
霍乱暴露和风险。我们目前不了解免疫学和临床参数是什么
最能预测最近的暴露情况,也不能预测不同流行程度地区的免疫反应
是相似的。在初步研究中,我们对来自以下来源的抗体反应数据使用了机器学习方法:
对孟加拉国的霍乱患者进行分类,以确定个人是否在过去 30 年、90 年或
360 天,具有高灵敏度和特异性。在此应用中,我们建议使用纵向抗体
来自具有不同遗传和流行病学特征的人群的反应动力学,与新的统计数据相结合
和机器学习方法提供通用工具来估计接触的发生率
横断面血清调查中的霍乱弧菌。在目标 1 中,我们将开发模型来估计自
霍乱弧菌暴露以及横截面抗体谱和人口统计的暴露发生率
数据使用之前从孟加拉国的一个队列中收集的数据。这些结果将使我们能够确定
对于预测暴露后时间最有用的抗体和人口统计因素。在目标 2 中,我们将
从海地的一组霍乱病例和家庭接触者中收集纵向抗体数据,以开发
根据横断面血清监测估计暴露发生率的模型。这个队列也将使我们
比较针对中度/重度病例和轻度/无症状病例开发的模型。在目标 3 中,我们将
优化和验证测量霍乱特异性抗体的现场适应方法,包括使用干燥的
血斑和侧流检测。我们将使用这些进行概念验证横断面血清调查
海地农村的方法。完成这些目标后,我们将提供许多新工具
衡量人群对霍乱易感性的指标。这些工具将有可能改变霍乱
控制工作从当前的反应性策略转向主动性策略,有可能导致疾病
消除。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Ted Leung其他文献
Daniel Ted Leung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Ted Leung', 18)}}的其他基金
Mentoring patient-oriented researchers in pediatric diarrhea
指导以患者为中心的小儿腹泻研究人员
- 批准号:
10591728 - 财政年份:2023
- 资助金额:
$ 66.77万 - 项目类别:
Development of clinical decision tools for management of diarrhea of children in high and low resource settings
开发资源丰富和匮乏环境下儿童腹泻管理的临床决策工具
- 批准号:
9912093 - 财政年份:2018
- 资助金额:
$ 66.77万 - 项目类别:
Estimating Cholera Burden with Cross-sectional Immunologic Data
用横截面免疫学数据估计霍乱负担
- 批准号:
10132972 - 财政年份:2018
- 资助金额:
$ 66.77万 - 项目类别:
Development of clinical decision tools for management of diarrhea of children in high and low resource settings
开发资源丰富和匮乏环境下儿童腹泻管理的临床决策工具
- 批准号:
10522523 - 财政年份:2018
- 资助金额:
$ 66.77万 - 项目类别:
Development of clinical decision tools for management of diarrhea of children in high and low resource settings
开发资源丰富和匮乏环境下儿童腹泻管理的临床决策工具
- 批准号:
10649542 - 财政年份:2018
- 资助金额:
$ 66.77万 - 项目类别:
Estimating Cholera Burden with Cross-sectional Immunologic Data
用横截面免疫学数据估计霍乱负担
- 批准号:
10388296 - 财政年份:2018
- 资助金额:
$ 66.77万 - 项目类别:
Mucosal associated invariant T (MAIT) cells in Vibrio cholerae infection and vaccination
霍乱弧菌感染和疫苗接种中的粘膜相关不变 T (MAIT) 细胞
- 批准号:
10153667 - 财政年份:2017
- 资助金额:
$ 66.77万 - 项目类别:
Mucosal associated invariant T (MAIT) cells in Vibrio cholerae infection and vaccination
霍乱弧菌感染和疫苗接种中的粘膜相关不变 T (MAIT) 细胞
- 批准号:
9926810 - 财政年份:2017
- 资助金额:
$ 66.77万 - 项目类别:
Mucosal associated invariant T (MAIT) cells in Vibrio cholerae infection and vaccination
霍乱弧菌感染和疫苗接种中的粘膜相关不变 T (MAIT) 细胞
- 批准号:
9398501 - 财政年份:2017
- 资助金额:
$ 66.77万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 66.77万 - 项目类别:
Translational genomics in gout: From GWAS signal to mechanism
痛风的转化基因组学:从 GWAS 信号到机制
- 批准号:
10735151 - 财政年份:2023
- 资助金额:
$ 66.77万 - 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
- 批准号:
10734831 - 财政年份:2023
- 资助金额:
$ 66.77万 - 项目类别:
Influence of Particulate Matter on Fetal Mitochondrial Programming
颗粒物对胎儿线粒体编程的影响
- 批准号:
10734403 - 财政年份:2023
- 资助金额:
$ 66.77万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 66.77万 - 项目类别: