Metalloenzyme structure, function and assembly
金属酶的结构、功能和组装
基本信息
- 批准号:9906257
- 负责人:
- 金额:$ 30.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acetyl Coenzyme AAmazeAntibiotic ResistanceAntibioticsAntineoplastic AgentsAntiviral AgentsAttentionBindingBiochemistryBioinformaticsBiotechnologyCarbon monoxide dehydrogenaseChemicalsChemistryClostridium difficileCobalaminComplexDrug TargetingEnzymesFamilyFive-Year PlansGenomicsGoalsHealthHeartHumanHuman MicrobiomeHydrogenIonsLaboratoriesLifeMetabolismMetalloproteinsMetalsMolecularNatural ProductsNatureNitrogenOral cavityOxygenPathogenesisPathway interactionsPharmacologic SubstanceProductionPropertyProteinsReactionRecombinantsS-AdenosylmethionineStructureSubgroupSystemTechniquesTimeToxic Environmental SubstancesX-Ray Crystallographybasecarbon fixationclimate changecofactorfrontierhuman microbiotainsightmembermetalloenzymemicrobialnovelpathogenremediationscaffoldsuccesstooltumor
项目摘要
Abstract
The combination of metal ions with proteins offers unique chemical reactivities, which are at the heart of many
of Nature's most amazing chemical transformations. My laboratory interrogates how metalloenzymes harness
the reactivity of supernucleophiles and radical cofactors, while protecting themselves from potential damage. It
is an incredibly exciting time to be studying metalloenzymes. Bioinformatics and genomic studies are
identifying new putative metalloenzymes at a dizzying pace, with more than 100,000 unique sequences now
associated with the Radical S-adenosylmethionine (SAM) enzyme family alone. Characterization of these
enzymes is revealing unprecedented chemistry and new cofactor-binding structural motifs. Impressively, many
of these Radical SAM (RS) enzymes are part of biosynthetic pathways that produce natural products with
novel molecular scaffolds and promising pharmaceutical properties (including antibiotic, antiviral, and anti-
tumor properties). My laboratory is employing our favorite technique of X-ray crystallography to probe
sequence space within this family with the goal of understanding how RS enzymes harness radical-species to
perform chemically challenging reactions. In the next five years, we will leverage recent success and continue
to investigate the structure/function of cobalamin-dependent RS enzymes. This 7000-membered RS subgroup
represents a new set of challenges and opportunities to understand how Nature tunes and controls both radical
and supernucleophile reactivities. It is not only the RS enzyme family that has been in the spotlight recently;
the glycyl radical enzyme (GRE) family is also receiving increased attention. In this latter case, the human
microbiome project is providing new information as to the importance and abundance of GREs in the human
gut and oral cavities. For example, the most abundant uncharacterized enzyme found in the gut is a GRE! In
the next five years, we plan to investigate several newly discovered members of the GRE family that appear to
be key players in human microbial communities. Our goal is to use our structural tools to interrogate the
molecular basis for the radical-based chemistry that contributes to microbial metabolism, and potentially
pathogenesis, in the human gut. A number of these GREs are found in common pathogens, like C. difficile,
and are potential drug targets. Finally, it is a great period to be working on the “great clusters of life,” which are
responsible for the fixation of carbon (C-cluster/A-cluster), nitrogen (MoFe cluster) and hydrogen (H-cluster).
My laboratory focuses on carbon fixation and the C- and A-clusters of carbon monoxide dehydrogenase/acetyl-
CoA synthase. Recent advances have afforded recombinant systems that are allowing us to probe cluster
assembly, reaction mechanism, and oxygen-sensitivity in a manner that was not possible previously. Oxygen-
sensitivity is the Achilles heel of a complex metalloprotein and we plan to use our structural toolbox to
investigate the molecular basis of C-cluster oxygen-sensitivity.
抽象的
金属离子与蛋白质的结合提供了独特的化学反应性,这是许多化学反应的核心
我的实验室探究了自然界最令人惊奇的化学转化。
超亲核试剂和自由基辅助因子的反应性,同时保护自身免受潜在损害。
对于生物信息学和基因组研究来说,这是一个令人难以置信的激动人心的时刻。
以令人眼花缭乱的速度识别新的假定金属酶,目前有超过 100,000 个独特序列
与自由基 S-腺苷甲硫氨酸 (SAM) 酶家族相关。
令人印象深刻的是,酶正在揭示化学和新的辅因子结合结构基序。
这些 Radical SAM (RS) 酶是生产天然产物的生物合成途径的一部分
新颖的分子支架和有前途的药物特性(包括抗生素、抗病毒和抗-
我的实验室正在采用我们最喜欢的 X 射线晶体学技术来探测。
该家族内的序列空间,目的是了解 RS 酶如何利用自由基物种
在接下来的五年中,我们将利用最近的成功并继续进行具有挑战性的化学反应。
研究钴胺素依赖性 RS 酶的结构/功能,该酶有 7000 个成员。
代表了一系列新的挑战和机遇,以了解自然如何调整和控制激进的
最近备受关注的不仅是 RS 酶家族,还有超亲核试剂反应性。
甘氨酰自由基酶 (GRE) 家族也受到越来越多的关注。
微生物组项目正在提供有关 GRE 在人类中的重要性和丰度的新信息
例如,肠道中发现的最丰富的未表征酶是 GRE!
未来五年,我们计划调查 GRE 家族中几个新发现的成员,这些成员似乎
成为人类微生物群落的关键参与者。我们的目标是使用我们的结构工具来探究。
有助于微生物代谢的自由基化学的分子基础,并可能
在人类肠道中,许多 GRE 都存在于常见病原体中,例如艰难梭菌、
最后,现在是研究“生命大簇”的好时机,它们是
负责固定碳(C 簇/A 簇)、氮(MoFe 簇)和氢(H 簇)。
我的实验室专注于碳固定以及一氧化碳脱氢酶/乙酰基的 C 和 A 簇
CoA 合酶的最新进展提供了重组系统,使我们能够探测簇。
以以前不可能的方式研究组装、反应机制和氧敏感性。
敏感性是复杂金属蛋白的致命弱点,我们计划使用我们的结构工具箱来
研究 C 簇氧敏感性的分子基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CATHERINE L DRENNAN其他文献
CATHERINE L DRENNAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CATHERINE L DRENNAN', 18)}}的其他基金
SOLUTION SAXS STUDIES OF SUBUNIT INTERACTIONS IN RIBONUCLEOTIDE REDUCTASE
核糖核苷酸还原酶中亚基相互作用的解决方案 SAXS 研究
- 批准号:
8363533 - 财政年份:2011
- 资助金额:
$ 30.42万 - 项目类别:
COMPLEX OF CORRINOID IRON-SULFUR PROTEIN AND ITS METHYLTRANSFERASE
咕啉铁硫蛋白复合物及其甲基转移酶
- 批准号:
8169291 - 财政年份:2010
- 资助金额:
$ 30.42万 - 项目类别:
E COLI CLASS IA RIBONUCLEOTIDE REDUCTASE (RNR) HOLOCOMPLEX
大肠杆菌 IA 类核糖核苷酸还原酶 (RNR) 全复合物
- 批准号:
8169292 - 财政年份:2010
- 资助金额:
$ 30.42万 - 项目类别:
HYDROXYPROPYLPHOSPHONIC ACID EPOXIDASE (HPPE) BOUND WITH SUBSTRATE ANALOGS
羟丙基膦酸环氧化酶 (HPPE) 与底物类似物结合
- 批准号:
8169296 - 财政年份:2010
- 资助金额:
$ 30.42万 - 项目类别:
PROTEIN ENGINEERING OF BIRA FOR PROTEIN TAGGING
用于蛋白质标记的 BIRA 蛋白质工程
- 批准号:
8169295 - 财政年份:2010
- 资助金额:
$ 30.42万 - 项目类别:
HIGH PRESSURE COOLING OF E COLI CLASS IA RIBONUCLEOTIDE REDUCTASE COMPLEX
高压冷却大肠杆菌 IA 类核糖核苷酸还原酶复合物
- 批准号:
8171517 - 财政年份:2010
- 资助金额:
$ 30.42万 - 项目类别:
TERTIARY AND QUATERNARY STRUCTURE CHARACTERIZATION OF METALLOENZYMES IN SOLUTION
溶液中金属酶的三级和四级结构表征
- 批准号:
8171518 - 财政年份:2010
- 资助金额:
$ 30.42万 - 项目类别:
相似国自然基金
基于生物激励特征和惊奇计算模型的智能驾驶场景异常事件检测研究
- 批准号:61603357
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
大数据流中低层与高层惊奇事件检测的研究
- 批准号:61572362
- 批准年份:2015
- 资助金额:67.0 万元
- 项目类别:面上项目