A New Superconducting Detector Technology for Mass Spectrometry of Large Biomolecules
用于大生物分子质谱分析的新型超导探测器技术
基本信息
- 批准号:9907501
- 负责人:
- 金额:$ 22.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-15 至 2021-02-14
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAffectAreaAutomobile DrivingBiologicalBiological SciencesCellsChargeCollaborationsComplexDetectionDevelopmentDisadvantagedDisciplineDrug IndustryElectronicsElectronsEngineeringEnzymesEvaluationFoundationsFourier TransformGoalsGovernmentHealth SciencesHeavy IonsImageImpulsivityIndustryIonsIsotopesKineticsKnowledgeLasersLeadLegal patentLifeLinkMapsMass Spectrum AnalysisMethodsMolecularMolecular AnalysisMolecular BiologyPathologyPatternPerformancePersonsPharmacotherapyPhaseProcessProgram DevelopmentProteinsProteomicsResearchResolutionSpecimenSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpeedStatistical DistributionsSteamSystemTechnologyTestingTimeTissue SampleTissuesVariantVisionWorkbasecommercializationdata acquisitiondesigndetectordisease diagnosisinstrumention sourceionizationionization techniquemass analyzermass spectrometermass spectrometric imagingmodels and simulationprogramsprotein complexsimulationsingle moleculetandem mass spectrometrytime of flight mass spectrometryvibrationvoltagewater solution
项目摘要
Project Summary/Abstract
The long-term goal of our efforts is to enable identification and mapping of every molecule in a cell. Such information
is sought in many life-science disciplines including molecular biology, pathology, proteomics and for the pharmaceutical
industry. It is critical information needed to underpin fundamental advances in our understanding of life processes.
However, this vision will require development of a technology for efficient detection of molecules, that does not yet
exist. Detectors for biomolecules are the foundation of analytical instruments such as mass spectrometers. We have
developed and experimentally proven new concepts that will allow us to build and commercialize a detector
technology enabling this grand vision. The technology is based on a new patented approach to using superconducting
materials which can record 100% of the impinging molecules, even the heaviest proteins and protein complexes.
Methods are now available to launch biomolecules of any mass from tissue and water solutions as ions into mass
spectrometers with high efficiency and no fragmentation or denaturing. Such soft laser-ionization methods as MALDI
(matrix-assisted laser desorption/ionization) and DIVE (desorption by impulsive vibrational excitation) open new
opportunities for molecular analysis and mapping. We have designs for mass spectrometers that can deliver these ions
onto a detector with very high mass resolving power (>200,000). However, the detector is currently the missing link in
this exciting development. With the new detector technology, a whole new class of imaging mass spectrometers can
be developed and brought to market.
Our superconducting detector technology (a superconducting delay line or SCDL, pronounced skiddle) delivers 100%
detection while capturing the high mass resolving power on unfragmented large-mass molecules like proteins. It is fast
(>108 molecules/second) and expandable to large areas (>4 cm2). A proof-of-concept project was completed in the past
year. We are commercializing this technology for biomolecule time-of-flight detection as part of our grand vision to
spectroscopically map all molecules in a cell. We have built a team of academic and commercial experts in biological
mass spectrometry (MS) and superconducting detectors and electronics. We will develop a highly parallel tessellated
detector with integrated superconducting electronics on the detector wafer. The first step in commercialization, this
Phase I program, is thorough simulation of the detector and its electronics in collaboration with SeeQC, Inc. (formerly
Hypres, Inc.). When complete, we will have a high level of confidence in its expected performance. In our Phase II, we
will fabricate a working detector with SeeQC and evaluate its performance in a test MS system on real biomolecular
specimens. Commercializing the SCDL detector for high performance time-of-flight mass spectrometry is the first stage
of our plans for this detector technology. In our second stage of development, we will design and build the technology
for recording time-of-flight encoded images. In other words, the detector will be used to record megapixel stigmatic
images that will allow us to push the spatial resolution of the imaging mass spectrometer to better than 100 nm. The
proposed new detector technology will enable major advancements in life sciences and related industries.
项目概要/摘要
我们努力的长期目标是能够识别和绘制细胞中的每个分子。此类信息
被许多生命科学学科所追求,包括分子生物学、病理学、蛋白质组学和制药
行业。这是支持我们对生命过程的理解取得根本进展所需的关键信息。
然而,这一愿景需要开发一种有效检测分子的技术,而该技术目前还没有实现。
存在。生物分子检测器是质谱仪等分析仪器的基础。我们有
开发并经过实验验证的新概念将使我们能够构建探测器并将其商业化
技术实现这一宏伟愿景。该技术基于一种使用超导的新专利方法
可以记录 100% 撞击分子的材料,甚至是最重的蛋白质和蛋白质复合物。
现在有方法可以将组织和水溶液中任何质量的生物分子以离子形式发射到质量中
光谱仪效率高,无碎片或变性。 MALDI 等软激光电离方法
(基质辅助激光解吸/电离)和 DIVE(脉冲振动激发解吸)开辟了新的领域
分子分析和绘图的机会。我们设计了可以传递这些离子的质谱仪
到具有极高质量分辨能力 (>200,000) 的探测器上。然而,探测器目前是缺失的环节
这一令人兴奋的发展。借助新的检测器技术,全新类型的成像质谱仪可以
被开发并推向市场。
我们的超导探测器技术(超导延迟线或 SCDL,发音为 skiddle)可实现 100%
检测,同时捕获未碎片的大质量分子(如蛋白质)的高质量分辨率。速度很快
(>108 分子/秒)并可扩展到大面积(>4 cm2)。概念验证项目已于过去完成
年。我们正在将这项用于生物分子飞行时间检测的技术商业化,作为我们宏伟愿景的一部分
绘制细胞内所有分子的光谱图。我们建立了一支由生物领域学术和商业专家组成的团队
质谱 (MS) 和超导探测器和电子设备。我们将开发一个高度并行的棋盘格
探测器晶片上集成了超导电子器件。这是商业化的第一步
第一阶段计划是与 SeeQC, Inc.(以前称为
海普尔斯公司)。完成后,我们将对其预期性能充满信心。在我们的第二阶段,我们
将使用 SeeQC 制造工作探测器,并在真实生物分子的测试 MS 系统中评估其性能
标本。用于高性能飞行时间质谱分析的 SCDL 探测器商业化是第一阶段
我们对此探测器技术的计划。在我们的第二个发展阶段,我们将设计和构建技术
用于记录飞行时间编码图像。换句话说,探测器将用于记录百万像素的象散
这些图像将使我们能够将成像质谱仪的空间分辨率提高到 100 nm 以上。这
拟议的新探测器技术将使生命科学和相关行业取得重大进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Fred Kelly其他文献
Thomas Fred Kelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别: