Towards a Complete Description of the Circuitry Underlying Sharp Wave-Mediated Memory Replay
全面描述锐波介导的记忆重放背后的电路
基本信息
- 批准号:9769888
- 负责人:
- 金额:$ 264.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimalsAreaBehaviorBehavioralBrainCell NucleusCellsCognitionCognitiveCommunitiesComorbidityComputer SimulationDendritesEventHippocampus (Brain)InterneuronsInvertebratesLearningMedialMediatingMemoryMemory DisordersMethodsModelingMolecularMonitorNeuronsNeurosciencesOpticsOutputPathway interactionsPatternPlayPositioning AttributeProcessPropertyPyramidal CellsResearchResourcesRoleRouteSignal TransductionSpeedSystemTechnologyTestingWorkawakebiophysical modelbrain cellcell typecognitive functiondentate gyrusentorhinal cortexexperimental studygranule cellinsightmemory consolidationnervous system disordernetwork architectureneuropsychiatric disordernovel strategiesrelating to nervous systemsegregationspatial memorysupercomputertherapy designvoltageway finding
项目摘要
Although neuroscience has provided a great deal of information about how neurons work, the fundamental
question of how neurons function together in a network to produce cognition has been difficult to address.
Our group has been at the forefront of developing methods that allow large scale monitoring of identified
neurons, monitoring of voltage signals by optical means and elucidation of subcellular events in dendrites,
all of which can now be done in awake behaving animals. We propose to use these methods to provide a
deep understanding of how the neurons of the hippocampal region generate the sharp-wave ripple (SPW-
R). This remarkable signal has been shown to depend on prior learning and to produce high-speed replay
of memory sequences (e.g. a path along a track). The function of this signal is memory consolidation;
disruption of SPW-Rs results in strong deficits in memory-guided behavior. Because much is known about
the hippocampal cell types involved and their network connections, understanding the SPW-R is a
tractable target for the first major effort to elucidate the cellular/network mechanism of a mammalian brain
signal at an analytical level comparable to that achieved in the study of simple invertebrate systems.
Project 1 is aimed at understanding the external and intra-hippocampal pathways that control the initiation
of SPW-Rs. Project 2 deals with the events that occur during the SPW-R, including the timing of activity in
identified cell types and understanding the fundamental network architecture by which memory sequences
are produced. Project 3 deals with how the information that is replayed during the SPW-R is encoded. We
will attempt to create an artificial memory and then determine whether the memory is replayed during a
SPW-R; we will also interfere with molecular mechanisms of memory storage to determine whether we can
erase the memories that are replayed during the SPW-R. Project 4 builds upon recent work indicating that
differentially projecting CA1 pyramidal cells have distinct properties and will test the possibility that SPW-
Rs in distinct output channels may carry different information and affect different behaviors. In Project 5 we
will develop the first non-reduced computational model of the hippocampus, incorporating information
about cell types and connections. This will be a major new resource for our group and the research
community that will permit unprecedentedly close interplay between experiment and computation. To the
extent that the model can account for the experimental observations, we can use it to understand
underlying network principles and design interventional experiments to validate this understanding. To the
extent that the model cannot explain results, it will help point us to aspects of network function that require
further elucidation. Taken together, Projects 1-5 provide a tractable path to a major breakthrough in
understanding how a cognitively important brain signal is generated.
尽管神经科学提供了大量关于神经元如何工作的信息,但基本原理
神经元如何在网络中共同发挥作用以产生认知的问题一直难以解决。
我们的团队一直处于开发方法的最前沿,这些方法可以对已识别的物质进行大规模监测
神经元,通过光学手段监测电压信号并阐明树突中的亚细胞事件,
所有这些现在都可以在清醒的动物身上完成。我们建议使用这些方法来提供
深入了解海马区神经元如何产生尖波波纹(SPW-
R)。这一非凡的信号已被证明依赖于先前的学习并产生高速重放
记忆序列(例如沿着轨道的路径)。该信号的作用是巩固记忆;
SPW-R 的破坏会导致记忆引导行为的严重缺陷。因为很多人都知道
所涉及的海马细胞类型及其网络连接,了解 SPW-R 是
阐明哺乳动物大脑细胞/网络机制的首次重大努力的易处理目标
信号的分析水平与简单无脊椎动物系统研究中达到的水平相当。
项目 1 旨在了解控制启动的外部和海马内通路
SPW-R。项目 2 处理 SPW-R 期间发生的事件,包括活动的时间安排
识别细胞类型并了解记忆序列的基本网络架构
被生产。项目 3 涉及如何对 SPW-R 期间重放的信息进行编码。我们
将尝试创建人工记忆,然后确定该记忆是否在某个过程中重放
SPW-R;我们还将干扰记忆存储的分子机制,以确定我们是否可以
擦除 SPW-R 期间重播的记忆。项目 4 以最近的工作为基础,表明
差异投影 CA1 锥体细胞具有独特的特性,将测试 SPW- 的可能性
不同输出通道中的R可能携带不同的信息并影响不同的行为。在项目5中我们
将开发第一个非简化的海马计算模型,其中包含信息
关于细胞类型和连接。这将成为我们小组和研究的主要新资源
社区将允许实验和计算之间前所未有的密切相互作用。至
模型可以解释实验观察的程度,我们可以用它来理解
底层网络原理并设计介入实验来验证这种理解。至
尽管模型无法解释结果,但它将帮助我们指出网络功能中需要的方面
进一步阐明。总而言之,项目 1-5 为在
了解具有认知意义的重要大脑信号是如何产生的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GYORGY BUZSAKI其他文献
GYORGY BUZSAKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GYORGY BUZSAKI', 18)}}的其他基金
Reconfigurable 3D Origami Probes for Multi-modal Neural Interface
用于多模态神经接口的可重构 3D 折纸探针
- 批准号:
10738994 - 财政年份:2023
- 资助金额:
$ 264.38万 - 项目类别:
Non-invasive Radio Frequency Stimulation of Neurons and Networks
神经元和网络的无创射频刺激
- 批准号:
10030860 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Non-invasive Radio Frequency Stimulation of Neurons and Networks
神经元和网络的无创射频刺激
- 批准号:
10267179 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Transformation of Neuronal Activity in the Entorhinal-hippocampal-neocortex Path
内嗅-海马-新皮质路径中神经元活动的转变
- 批准号:
10586043 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Non-invasive Radio Frequency Stimulation of Neurons and Networks
神经元和网络的无创射频刺激
- 批准号:
10447185 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Non-invasive Radio Frequency Stimulation of Neurons and Networks
神经元和网络的无创射频刺激
- 批准号:
10666706 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Transformation of Neuronal Activity in the Entorhinal-hippocampal-neocortex Path
内嗅-海马-新皮质路径中神经元活动的转变
- 批准号:
10819013 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Non-invasive Radio Frequency Stimulation of Neurons and Networks
神经元和网络的无创射频刺激
- 批准号:
10666706 - 财政年份:2020
- 资助金额:
$ 264.38万 - 项目类别:
Neural circuits regulating brain-wide effects of oxytocin neurons
调节催产素神经元全脑效应的神经回路
- 批准号:
10705990 - 财政年份:2018
- 资助金额:
$ 264.38万 - 项目类别:
Physiological identification and characterization of PVN neuronal populations
PVN 神经元群的生理学鉴定和表征
- 批准号:
10220157 - 财政年份:2018
- 资助金额:
$ 264.38万 - 项目类别:
相似国自然基金
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
三江源国家公园黄河源园区食草野生动物与放牧家畜冲突的强度、影响及未来情景
- 批准号:42371283
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
十年禁渔对赤水河底栖动物群落多样性及其维持机制的影响
- 批准号:32301370
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
- 批准号:42307349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
土壤动物对草地生态系统地下食物网碳氮传输过程及土壤有机质形成的影响
- 批准号:32301359
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 264.38万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 264.38万 - 项目类别:
Chronic Pain and Risk of Alzheimer's-Related Neurodegeneration
慢性疼痛和阿尔茨海默病相关神经变性的风险
- 批准号:
10644253 - 财政年份:2023
- 资助金额:
$ 264.38万 - 项目类别:
An Integrated Catheter Dressing for Early Detection of Catheter-related Bloodstream Infections
用于早期检测导管相关血流感染的集成导管敷料
- 批准号:
10647072 - 财政年份:2023
- 资助金额:
$ 264.38万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 264.38万 - 项目类别: