Biomechanical Influence of ECM Remodeling on the Developing Enthesis
ECM 重塑对发育中的生物力学影响
基本信息
- 批准号:9552708
- 负责人:
- 金额:$ 36.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAdultAffectAffinity ChromatographyAlgorithmsAmino AcidsArchitectureAtomic Force MicroscopyBehaviorBiomechanicsCartilageCellsCellular MorphologyCellularityChemistryCicatrixCollaborationsConfocal MicroscopyCuesDevelopmentDevelopmental ProcessDiseaseEmbryoEmbryonic DevelopmentEngineeringEnvironmentExtracellular MatrixExtracellular Matrix ProteinsFailureForelimbFructoseGrowthGuidelinesHeparan Sulfate ProteoglycanImageryImmunofluorescence ImmunologicIndividualInstructionKnowledgeLabelLaboratoriesMapsMass Spectrum AnalysisMeasurementMeasuresMechanicsMetabolicMethionineMethodsModelingModulusMorphologyMusMuscleMusculoskeletalNatural regenerationOperative Surgical ProceduresOpticsPlayPolymersProtein BiosynthesisProtein DynamicsProteinsResearch PersonnelRoleSkeletal MuscleStructureTechniquesTendon forceTendon structureTestingThree-Dimensional ImageThree-Dimensional ImagingTimeTissue ViabilityTissuesWorkanalogbasebonecell behaviorcell motilitycomparativedesignfunctional grouphigh resolution imagingimage processingimaging biomarkerin vivoinnovationinterstitialknock-downlaser capture microdissectionmechanical loadmechanical propertiesmicroscopic imagingnoveloverexpressionperlecanpostnatalprogenitorprotein degradationregenerative therapyrepairedscaffoldsuccesstissue repair
项目摘要
PROJECT SUMMARY
Despite decades of work, there has been little success in engineering scaffolds that can successfully
restore the enthesis, the tissue smoothly transfers muscle-generated force from tendon to bone. This region is
prone to failure from excessive mechanical loading and in many cases the interface cannot be surgically
reestablished due to the complexity and low cellularity of the enthesis. A reason engineered scaffolds lack the
ability to restore the damaged enthesis is that the design predominantly mimics the architecture and
composition of the mature tissue. What is rarely taken into consideration in scaffold design is that tissues
undergo extensive ECM remodeling during development, which plays a significant role in directing cellular
behavior in the formation of the mature tissue. Researchers have been unable to capitalize on these instructive
cues for scaffold design due to the limited knowledge regarding the composition, turnover, organization and
mechanical properties of developing musculoskeletal tissues.
Our long-term objective is to create scaffolds that can biomechanically direct cells to rebuild damaged
tissues; therefore, it is critical to identify how this is accomplished in vivo. To achieve our objective, we need to
first address the following questions: 1) What are the dynamics of ECM expression over the course of enthesis
formation? 2) How are these components organized in 3D? 3) How does this organization influence the
mechanical environment? 4) How does mechanical loading regulate enthesis assembly?
To directly quantify ECM protein incorporation into the matrix of developing tendon, enthesis and cartilage,
we will label tissues at various stages of murine development with non-canonical amino acids (ncAAs). The
bioorthogonal handles on the ncAAs enable the identification and localization of newly synthesized proteins
using click chemistry. To see how individual ECM components are spatially distributed with respect to cells in
the developing enthesis, we will use optical clearing methods to visualize murine tissues containing
fluorescently labeled tendon and cartilage progenitors. Using confocal microscopy and 3D image processing
algorithms, we will characterize how morphology at the intracellular, cellular and tissue scale change due to
development and embryonic motility. To test the hypothesis that the stiffness across the enthesis will develop a
steeper gradient upon the onset of embryonic and postnatal motility, we will utilize our novel atomic force
microscopy method that can measure the stiffness of cells and ECM within viable tissues. This hypothesis will
be directly tested by employing the mdg model of muscular dysgenesis, a mouse line in which skeletal muscle
contractility is inhibited during embryogenesis. By correlating the mechanical properties with the compositional
and structural characterization, we expect to identify a set of scaffold parameters that will promote cellular
behaviors necessary for enthesis regeneration.
项目概要
尽管经过了几十年的努力,在能够成功地实现这一目标的工程脚手架方面却几乎没有取得成功。
恢复附着点后,组织顺利地将肌肉产生的力从肌腱转移到骨骼。该地区是
容易因过度的机械负载而发生故障,并且在许多情况下,该接口无法通过手术进行
由于附着点的复杂性和低细胞结构而重新建立。工程支架缺乏的原因
恢复受损端点的能力在于该设计主要模仿了建筑和
成熟组织的组成。在支架设计中很少考虑的是组织
在发育过程中经历广泛的 ECM 重塑,这在指导细胞中发挥着重要作用
成熟组织形成中的行为。研究人员无法利用这些指导性的成果
由于对组成、周转、组织和结构的了解有限,因此对脚手架设计的提示
发育中的肌肉骨骼组织的机械特性。
我们的长期目标是创建能够通过生物力学指导细胞重建受损的支架
纸巾;因此,确定这是如何在体内实现的至关重要。为了实现我们的目标,我们需要
首先解决以下问题:1)在插入过程中 ECM 表达的动态是什么
形成? 2) 这些组件在 3D 中是如何组织的? 3)这个组织如何影响
机械环境? 4)机械负载如何调节附着点组装?
为了直接量化 ECM 蛋白掺入发育中的肌腱、附着点和软骨的基质,
我们将用非规范氨基酸(ncAA)标记小鼠发育各个阶段的组织。这
ncAA 上的生物正交处理能够识别和定位新合成的蛋白质
使用点击化学。了解各个 ECM 成分相对于细胞的空间分布
在发育中,我们将使用光学透明方法来可视化含有
荧光标记的肌腱和软骨祖细胞。使用共焦显微镜和 3D 图像处理
算法,我们将描述细胞内、细胞和组织尺度的形态学如何因
发育和胚胎运动。为了检验这样的假设:附着点的刚度会产生
在胚胎和出生后运动开始时梯度更陡,我们将利用我们新的原子力
显微镜方法可以测量活组织内细胞和 ECM 的硬度。这个假设将
通过采用肌肉发育不全的 mdg 模型直接进行测试,该模型是一种小鼠品系,其中骨骼肌
胚胎发生过程中收缩力受到抑制。通过将机械性能与成分相关联
和结构表征,我们期望确定一组支架参数,以促进细胞
附着点再生所必需的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarah Calve其他文献
Sarah Calve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarah Calve', 18)}}的其他基金
The interplay between active and passive mechanics in the aging bladder
老化膀胱中主动和被动力学之间的相互作用
- 批准号:
10827248 - 财政年份:2023
- 资助金额:
$ 36.82万 - 项目类别:
Extracellular integration of a cohesive myotendinous junction
粘性肌腱连接的细胞外整合
- 批准号:
10608522 - 财政年份:2023
- 资助金额:
$ 36.82万 - 项目类别:
Biomechanical influence of ECM remodeling on the developing enthesis
ECM重塑对发育中的生物力学影响
- 批准号:
10250802 - 财政年份:2020
- 资助金额:
$ 36.82万 - 项目类别:
Biomechanical influence of ECM remodeling on the developing enthesis
ECM重塑对发育中的生物力学影响
- 批准号:
10263389 - 财政年份:2020
- 资助金额:
$ 36.82万 - 项目类别:
Defining the mechanical link that unites the musculoskeletal system during limb development
定义肢体发育过程中联合肌肉骨骼系统的机械链接
- 批准号:
10226662 - 财政年份:2017
- 资助金额:
$ 36.82万 - 项目类别:
Biomechanical influence of ECM remodeling on the developing enthesis
ECM重塑对发育中的生物力学影响
- 批准号:
9398473 - 财政年份:2017
- 资助金额:
$ 36.82万 - 项目类别:
Imaging the role of hyaluronic acid in skeletal muscle assembly during murine for
透明质酸在小鼠骨骼肌组装过程中的作用成像
- 批准号:
8702704 - 财政年份:2014
- 资助金额:
$ 36.82万 - 项目类别:
Imaging the role of hyaluronic acid in skeletal muscle assembly during murine for
透明质酸在小鼠骨骼肌组装过程中的作用成像
- 批准号:
8827679 - 财政年份:2014
- 资助金额:
$ 36.82万 - 项目类别:
Imaging the role of hyaluronic acid in skeletal muscle assembly during murine for
透明质酸在小鼠骨骼肌组装过程中的作用成像
- 批准号:
8827679 - 财政年份:2014
- 资助金额:
$ 36.82万 - 项目类别:
相似国自然基金
青少年焦虑的预测和干预:基于跨通道恐惧泛化视角
- 批准号:32300928
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
推拿“舒筋调骨”干预青少年脊柱侧弯“肌肉力学-椎间载荷”平衡机制研究
- 批准号:82374607
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于数字表型青少年自杀行为转化风险测度及虚拟现实矫正干预研究
- 批准号:72304244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视屏活动和CaMKII m6A甲基化修饰影响青少年抑郁症状的纵向研究
- 批准号:82304168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
青少年创伤后应激与情绪问题:多模态机制与多维干预效果探究
- 批准号:32371139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 36.82万 - 项目类别:
Early Life Stress Induced Mechanisms of Cardiovascular Disease Risk and Resilience
生命早期压力诱发心血管疾病风险和恢复力的机制
- 批准号:
10555121 - 财政年份:2023
- 资助金额:
$ 36.82万 - 项目类别:
Addressing Weight Bias Internalization to Improve Adolescent Weight Management Outcomes
解决体重偏差内在化问题,改善青少年体重管理成果
- 批准号:
10642307 - 财政年份:2023
- 资助金额:
$ 36.82万 - 项目类别:
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 36.82万 - 项目类别: