Massively parallel microwire arrays for deep brain stimulation
用于深部脑刺激的大规模并行微线阵列
基本信息
- 批准号:9768582
- 负责人:
- 金额:$ 19.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAdverse effectsAnatomyAreaAxonBackBasal GangliaBehaviorBrainCalciumCaliberCell NucleusCell physiologyCellsClinicalComplexDeep Brain StimulationDevelopmentDevicesDiseaseDystoniaElectric StimulationElectrodesElectrophysiology (science)EngineeringEpilepsyEssential TremorFDA approvedFiberFreedomFrequenciesFunctional ImagingGilles de la Tourette syndromeGlassImageImplantLaser Scanning MicroscopyMajor Depressive DisorderMedical DeviceMental disordersMetalsMethodologyModernizationMovement DisordersNanotechnologyNeurologicNeuronsNeurosciencesObsessive-Compulsive DisorderParkinson DiseasePartner in relationshipPathologicPatternPerformancePhysiologic pulsePopulationProtocols documentationRoleSemiconductorsSiteSliceSpatial DistributionSpecificityStructureSystemTechnologyTestingTherapeuticTherapeutic EffectTissuesTreatment Efficacybasedeep brain stimulation arraydensitydesignexperimental studyin vivoinnovationinsightmaterials scienceneural circuitneural patterningneuromechanismneurophysiologynext generationnovel therapeuticspatch clamprelating to nervous systemresponseside effectspatiotemporalsuccesstooltwo-photon
项目摘要
Project Summary:
Deep brain stimulation (DBS) of basal ganglia is a well-established therapy for a variety of movement
disorders, such as Parkinson's disease (PD) and essential tremor. In addition, it is also an emerging therapy
for several psychiatric and neurological conditions, including epilepsy, major depression and obsessive-
compulsive disorder (OCD). Despite its clinical success, there is a limited understanding of the neural
mechanism behind DBS. Typical DBS system consists of a pulse generator, which deliveries the stimulation
pulses via an implanted metal electrode. It is possible that DBS exerts is therapeutic effect through several
different mechanisms including: (1) directly regulating neural firing at target nucleus; (2) activating nearby
neuronal axons; (3) influencing passing long-range projection axons by activating antidromic and orthodromic
action potentials. Because current DBS electrodes excite a large volume of neural tissue, it has been difficult to
precisely determine which of these targets and mechanisms are responsible for the therapeutic effects of DBS.
It is therefore critical to develop next generation DBS technology that enables selective targeting of different
populations of neural structures, ideally with single neuron and single axon fiber precision. In addition, it would
be beneficial to develop massively parallel DBS electrode arrays (10,000+ electrodes) to delivery different
spatiotemporal patterns of activity that can be optimized for therapeutic efficacy. Recent methodological
advances in material science and engineering now make such a device possible. This proposal describes a
high-density, massively parallel single cell and single axon level stimulation device based on bundled
microwires (BMWs): tens of thousands of metal-in-glass wires of less than 30 micrometers outer diameter. The
approach will be revolutionary for neurophysiology, allowing break-through experiments both in movement
disorders and fundamental understanding of neural circuit behavior. Here we propose: 1) To develop and
characterize a BMW stimulation array and demonstrate its efficacy in acute brain slices and in vivo. 2) To
couple the BMW array with modern semiconductor technology, demonstrating that driver circuit of a
commercially available micro-display chip is capable of injecting patterned stimulation current through the
BMW. We will validate the performance in brain slices and in vivo to test if different patterns of electrical
stimulation reliably generate corresponding activity patterns in the brain slice and in vivo. Together, this
proposal will bring neuroscience and engineering together to create the highest density electrophysiological
stimulation interface ever made, and provide proof of principle demonstrations through the combined
approaches of microwire stimulation, 2-photon functional imaging and classical electrophysiology. These
microwire arrays would be a powerful tool, which would not only offer substantial clinical benefits for movement
disorders, such as PD, but also provide mechanistic insights for DBS.
1
项目概要:
基底神经节深部脑刺激 (DBS) 是一种针对多种运动的成熟疗法
此外,它也是一种新兴疗法。
用于治疗多种精神和神经系统疾病,包括癫痫、重度抑郁症和强迫症
尽管强迫症(OCD)在临床上取得了成功,但人们对神经障碍的了解仍然有限。
DBS 背后的机制 典型的 DBS 系统由一个提供刺激的脉冲发生器组成。
DBS 可能通过植入的金属电极产生脉冲,从而通过多种方式发挥治疗作用。
不同的机制包括:(1)直接调节目标核的神经放电;(2)激活附近的神经元;
(3)通过激活逆向和顺向影响传递的远程投射轴突
由于当前的 DBS 电极可激发大量神经组织,因此很难实现动作电位。
精确确定这些靶点和机制中的哪些对 DBS 的治疗效果负责。
因此,开发下一代 DBS 技术至关重要,该技术能够选择性地针对不同的目标
神经结构群体,理想情况下具有单神经元和单轴突纤维精度。
有利于开发大规模并行 DBS 电极阵列(10,000 多个电极)以提供不同的
可以优化治疗效果的时空活动模式。
现在材料科学和工程的进步使这种设备成为可能。
基于捆绑的高密度、大规模并行单细胞和单轴突水平刺激装置
微丝 (BMW):数万根外径小于 30 微米的玻璃金属丝。
该方法对于神经生理学来说将是革命性的,可以在运动方面进行突破性的实验
在此我们建议: 1) 发展和理解神经回路行为。
表征 BMW 刺激阵列并证明其在急性脑切片和体内的功效 2) To。
将 BMW 阵列与现代半导体技术相结合,展示了
商用微显示芯片能够通过注入图案化刺激电流
宝马。我们将验证大脑切片和体内的性能,以测试不同的电模式是否有效。
刺激可靠地在大脑切片和体内产生相应的活动模式。
该提案将把神经科学和工程学结合起来,创造出最高密度的电生理学
曾经制作过的刺激界面,并通过组合提供原理演示证明
微线刺激、2 光子功能成像和经典电生理学方法。
微丝阵列将是一个强大的工具,它不仅可以为运动提供实质性的临床益处
疾病,如 PD,还为 DBS 提供机制见解。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Ding其他文献
Jun Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Ding', 18)}}的其他基金
Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
- 批准号:
10861526 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
Connectivity, activity, and function of a hypothalamic pathway in female social behaviors
女性社会行为中下丘脑通路的连接性、活动和功能
- 批准号:
10570861 - 财政年份:2021
- 资助金额:
$ 19.73万 - 项目类别:
Connectivity, activity, and function of a hypothalamic pathway in female social behaviors
女性社会行为中下丘脑通路的连接性、活动和功能
- 批准号:
10399638 - 财政年份:2021
- 资助金额:
$ 19.73万 - 项目类别:
Dopamine Degradation Pathway and Alpha-synuclein Aggregation
多巴胺降解途径和 α-突触核蛋白聚集
- 批准号:
10002314 - 财政年份:2017
- 资助金额:
$ 19.73万 - 项目类别:
Alcohol disrupts the balance between dopamine and GABA co-released by midbrain dopamine neurons
酒精破坏中脑多巴胺神经元共同释放的多巴胺和 GABA 之间的平衡
- 批准号:
10172801 - 财政年份:2017
- 资助金额:
$ 19.73万 - 项目类别:
Dopamine Degradation Pathway and Alpha-synuclein Aggregation
多巴胺降解途径和 α-突触核蛋白聚集
- 批准号:
10221065 - 财政年份:2017
- 资助金额:
$ 19.73万 - 项目类别:
Dopamine Degradation Pathway and Alpha-synuclein Aggregation
多巴胺降解途径和 α-突触核蛋白聚集
- 批准号:
9770570 - 财政年份:2017
- 资助金额:
$ 19.73万 - 项目类别:
Dopamine modulation of synaptic plasticity and integration in the striatum
多巴胺对纹状体突触可塑性和整合的调节
- 批准号:
10607794 - 财政年份:2015
- 资助金额:
$ 19.73万 - 项目类别:
Dopamine modulation of synaptic plasticity and integration in the striatum
多巴胺对纹状体突触可塑性和整合的调节
- 批准号:
10709024 - 财政年份:2015
- 资助金额:
$ 19.73万 - 项目类别:
Functional organization of neural circuits underlying movement control
运动控制背后的神经回路的功能组织
- 批准号:
8695503 - 财政年份:2011
- 资助金额:
$ 19.73万 - 项目类别:
相似国自然基金
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
IKZF1-N159Y/S热点突变在急性白血病中的致病机制研究
- 批准号:82300168
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMNAT1上调B7-H3介导急性早幼粒细胞白血病免疫逃逸的作用和机制研究
- 批准号:82300169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
支链氨基酸转氨酶1在核心结合因子急性髓细胞白血病中的异常激活与促进白血病发生的分子机制研究
- 批准号:82370178
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
SRSF3/LRP5/Wnt信号通路在急性淋巴细胞白血病中的作用及机制研究
- 批准号:82370128
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 19.73万 - 项目类别: