Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach

心力衰竭的早期诊断:围手术期数据驱动的方法

基本信息

项目摘要

PROJECT SUMMARY / ABSTRACT Candidate: Dr. Michael Mathis is a cardiothoracic anesthesiologist with board certification in anesthesiology and advanced perioperative echocardiography at the University of Michigan. Through completion of a T32 Research Training Grant, Dr. Mathis has developed expertise in perioperative outcomes research for patients with advanced cardiovascular disease. His long-term career goal is to improve care for patients with heart failure (HF) through harnessing perioperative electronic healthcare record (EHR) data for early diagnosis and management. This proposal builds on Dr. Mathis's expertise, providing protected time for training in data science methods necessary to drive forward the analytic techniques proposed for improving HF diagnosis. Environment: The University of Michigan is the coordinating center for the Multicenter Perioperative Outcomes Group (MPOG), an international consortium of over 50 anesthesiology and surgical departments with perioperative information systems. Dr. Sachin Kheterpal, MD, MBA is the primary mentor for Dr. Mathis, and is the Director for MPOG and member of the NIH Precision Medicine Initiative Advisory Panel. The proposed research will be completed under the guidance of Dr. Kheterpal, as well as co-mentors Milo Engoren, MD, Daniel Clauw, MD, and Kayvan Najarian, PhD. An advisory panel of experts in HF diagnosis and data science methodologies will provide Dr. Mathis with additional guidance. Background: HF is among the most common chronic conditions requiring hospitalization and carries high rates of mortality. In the perioperative period, HF is a risk factor for major cardiac complications. Despite advances in care, little progress has been made to reduce HF healthcare burden, with difficulties attributable to a lack of inexpensive, reliable diagnostic measures. Consequently, patients with HF can go unrecognized in early stages and do not receive treatments to reduce mortality. The perioperative period is an underutilized opportunity to improve HF diagnosis. Beyond the wealth of preoperative data available, the intraoperative period serves as a cardiac stress test through which hemodynamic responses to surgical and anesthetic stimuli are recorded with high resolution. Yet, this data remains an untapped resource for HF evaluation. Research: The goal of the proposed research is to incorporate the perioperative period as an opportunity for early diagnosis of HF. The two specific Aims are to develop a data-driven diagnostic algorithm for HF using preoperative EHR data (Aim 1) as well as intraoperative EHR data (Aim 2). Both aims will use automated techniques to extract features of HF from the perioperative EHR, developed at UM and scalable to multiple centers via the MPOG infrastructure. This work represents a paradigm shift in perioperative evaluation, using perioperative data as a diagnostic tool rather than a risk-assessment tool. The proposed research and training will provide Dr. Mathis with necessary data science computational experience to become an independent physician-investigator focused on improving perioperative management strategies for patients with HF.
项目概要/摘要 候选人:Michael Mathis 博士是一名心胸麻醉师,拥有麻醉学委员会认证 以及密歇根大学先进的围手术期超声心动图检查。通过完成T32 研究培训补助金,马西斯博士在患者围手术期结果研究方面积累了专业知识 患有晚期心血管疾病。他的长期职业目标是改善心脏病患者的护理 通过利用围手术期电子医疗记录 (EHR) 数据进行早期诊断和治疗失败 (HF) 管理。该提案建立在 Mathis 博士的专业知识之上,为数据培训提供了受保护的时间 推动改进心力衰竭诊断的分析技术所必需的科学方法。 环境:密歇根大学是多中心围手术期的协调中心 Outcomes Group (MPOG),一个由 50 多个麻醉科和外科科室组成的国际联盟 与围手术期信息系统。 Sachin Kheterpal 博士(医学博士、工商管理硕士)是 M​​athis 博士的主要导师, 是 MPOG 的主任,也是 NIH 精准医学计划咨询小组的成员。这 拟议的研究将在 Kheterpal 博士以及共同导师 Milo Engoren 的指导下完成, 医学博士、Daniel Clauw 医学博士和 Kayvan Najarian 博士。心力衰竭诊断和数据专家顾问小组 科学方法将为马西斯博士提供额外的指导。 背景:心力衰竭是最常见的需要住院治疗的慢性疾病之一,并且携带高风险。 死亡率。在围手术期,心力衰竭是主要心脏并发症的危险因素。尽管 尽管护理方面取得了进步,但在减轻心力衰竭医疗负担方面进展甚微,困难归因于 缺乏廉价、可靠的诊断措施。因此,心力衰竭患者可能无法被识别出来。 处于早期阶段并且没有接受降低死亡率的治疗。围手术期是一个未被充分利用的时期 改善心力衰竭诊断的机会。除了丰富的术前可用数据外,术中 期间作为心脏负荷测试,通过该测试血流动力学对手术和麻醉的反应 刺激以高分辨率记录。然而,这些数据仍然是心力衰竭评估的未开发资源。 研究:拟议研究的目标是将围手术期作为一个机会 心力衰竭的早期诊断。这两个具体目标是开发一种数据驱动的心力衰竭诊断算法,使用 术前 EHR 数据(目标 1)以及术中 EHR 数据(目标 2)。这两个目标都将使用自动化 从围手术期 EHR 中提取心力衰竭特征的技术,由 UM 开发,可扩展到多种 通过 MPOG 基础设施的中心。这项工作代表了围手术期评估的范式转变,使用 围手术期数据作为诊断工具而不是风险评估工具。拟议的研究和培训 将为 Mathis 博士提供必要的数据科学计算经验,使其成为独立的 医生研究员专注于改善心力衰竭患者的围手术期管理策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Robert Mathis其他文献

Michael Robert Mathis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Robert Mathis', 18)}}的其他基金

Cardiac sURgery anesthesia Best practices to reduce Acute Kidney Injury (CURB-AKI)
心脏手术麻醉减少急性肾损伤 (CURB-AKI) 的最佳实践
  • 批准号:
    10656576
  • 财政年份:
    2022
  • 资助金额:
    $ 17.23万
  • 项目类别:
Early Diagnosis of Heart Failure: A Perioperative Data-Driven Approach
心力衰竭的早期诊断:围手术期数据驱动的方法
  • 批准号:
    10421285
  • 财政年份:
    2018
  • 资助金额:
    $ 17.23万
  • 项目类别:

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
  • 批准号:
    62306090
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高精度海表反照率遥感算法研究
  • 批准号:
    42376173
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
  • 批准号:
    82371878
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
  • 批准号:
    62371156
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
  • 批准号:
    10724048
  • 财政年份:
    2023
  • 资助金额:
    $ 17.23万
  • 项目类别:
A mechanistic understanding of treatment-related outcomes of sleep disordered breathing using functional near infrared spectroscopy
使用功能性近红外光谱从机制上理解睡眠呼吸障碍的治疗相关结果
  • 批准号:
    10565985
  • 财政年份:
    2023
  • 资助金额:
    $ 17.23万
  • 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
  • 批准号:
    10696658
  • 财政年份:
    2023
  • 资助金额:
    $ 17.23万
  • 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
  • 批准号:
    10696658
  • 财政年份:
    2023
  • 资助金额:
    $ 17.23万
  • 项目类别:
Functional Connectivity and Baseline Networks of the White Matter Brain: Development and Dissemination of Algorithms and Tools
白质脑的功能连接和基线网络:算法和工具的开发和传播
  • 批准号:
    10391136
  • 财政年份:
    2022
  • 资助金额:
    $ 17.23万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了