Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
基本信息
- 批准号:9767834
- 负责人:
- 金额:$ 16.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-21 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced Malignant NeoplasmAdverse effectsAgonistAllograftingAntibodiesAntigen-Antibody ComplexAntitumor ResponseBiodistributionCRISPR/Cas technologyCancer PatientCell Culture TechniquesClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsColon AdenocarcinomaCombination immunotherapyCombined Modality TherapyComplexCoupledDNA Double Strand BreakDNA SequenceDataDevelopmentDisease remissionDrug KineticsEndocytosisEngineeringGene DeletionGenesGeneticGenomeGuide RNAHumanHybridsImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunityImmunologicsImmunooncologyImmunosuppressive AgentsImmunotherapyIn VitroIndividualInsect VirusesLeadLightMC38Magnetic nanoparticlesMagnetismMalignant NeoplasmsMediatingModelingModificationMusNatural ImmunityNonhomologous DNA End JoiningNormal tissue morphologyOX40OrganPD-1 blockadePDCD1LG1 genePancreatic Ductal AdenocarcinomaPathologic ProcessesPathway interactionsPhenotypeProteinsSignal TransductionSolid NeoplasmSpecificitySystemTestingTherapeuticTherapeutic EffectTissuesTreatment EfficacyTumor ImmunityTumor TissueViralViral Vectoranti-canceranti-tumor immune responsebasecancer heterogeneitycancer immunotherapycancer typeclinical applicationclinical translationdesignengineered nucleasesgene delivery systemgenome editinggenotoxicityhuman diseaseimage guidedimmune checkpointimmune checkpoint blockadeimmunoengineeringimmunogenicin vivoindividual patientinsertion/deletion mutationiron oxide nanoparticlemagnetic fieldmouse modelmultiplexed imagingnovelnucleasepatient subsetspersonalized strategiespreclinical studyresponsesuccesstherapeutic genome editingtransduction efficiencytumortumor microenvironmentvectorvector-inducedviral nanoparticle
项目摘要
Project Summary
The blockade of immune-checkpoint pathways has emerged as a promising therapeutic strategy for a variety
of cancers. However, the diverse tumor responses to immunotherapy seen in preclinical and clinical studies
prompt the development of combination immunotherapies that can be tailored to the complex immune milieu
of individual patients. On the other hand, the severe adverse effects associated with the combination therapies
with multiple antagonist antibodies address the necessity for alternative safe and effective therapeutic
approaches. In light of this, we aim to develop a hybrid nanoparticle-viral vector system for CRISPR/Cas9-
based in vivo therapeutic genome editing, which will be used for multiplexed disruption of immune suppressive
pathways in the tumor microenvironment. CRISPR/Cas9 systems are very efficient in generating DNA double-
strand breaks, thus disrupting genes through the non-homologous end-joining (NHEJ) pathway. However,
inducing uncontrolled CRISPR/Cas9 activities in vivo may lead to systemic genotoxicity. We will develop a
novel in vivo gene delivery system that integrates a baculoviral vector (BV) with magnetic nanoparticles
(MNPs). Our studies have shown that by taking advantage of the interplay between the MNP-mediated BV
margination and endocytosis and the innate immunity against insect viruses, this delivery system can provide
spatial and temporal control of CRISPR/Cas9 activity. We will use the MNP-BV system to deliver optimized
CRISPR/Cas9 for gene disruption of immune suppressive signals PD-L1 and TGF- in the tumor tissue. We
will evaluate CRISPR/Cas9 induced anti-tumor immune responses using two well-established mouse models,
an immunogenic model (MC38) where monotherapy with PD-1 blockade is sufficient, and non-immunogenic
models pancreatic ductal adenocarcinoma (PDAC) which portrays most non-immunogenic human solid
tumors that require combination strategies. In aim 1 studies, we will design and optimize CRISPR/Cas9
gRNAs for targeting PD-L1 and TGF-, package Cas9 and gRNAs into a BV vector, and construct the MNP-
BV system. In aim 2 studies, we will evaluate MNP-BV-induced multiplexed gene disruption in cell culture,
and determine the on-target and off-target indel rates. In aim 3 studies, we will test the controlled in vivo
delivery of CRISPR/Cas9, determine the immunological and therapeutic effects of local gene disruption vs.
systemic blockade with antagonist antibody in mouse tumor models. The success of the proposed studies will
provide a multiplexed intratumoral immunoengineering platform and pave the way for the clinical translation
of a highly efficient in vivo genome editing strategy for personalized cancer immunotherapy.
项目概要
免疫检查点通路的阻断已成为多种疾病的一种有前途的治疗策略
然而,在临床前和临床研究中发现肿瘤对免疫治疗的反应多种多样。
促进针对复杂免疫环境的联合免疫疗法的开发
另一方面,与联合治疗相关的严重不良反应。
具有多种拮抗剂抗体解决了替代安全有效治疗的必要性
鉴于此,我们的目标是开发一种用于 CRISPR/Cas9 的混合纳米颗粒病毒载体系统。
基于体内治疗性基因组编辑,将用于免疫抑制的多重破坏
肿瘤微环境中的 CRISPR/Cas9 系统在生成 DNA 双链方面非常有效。
链断裂,从而通过非同源末端连接(NHEJ)途径破坏基因。
在体内诱导不受控制的 CRISPR/Cas9 活性可能会导致系统性遗传毒性。
新型体内基因传递系统,将杆状病毒载体(BV)与磁性纳米粒子整合在一起
(MNP)我们的研究表明,通过利用 MNP 介导的 BV 之间的相互作用。
边缘化和内吞作用以及针对昆虫病毒的先天免疫,该递送系统可以提供
我们将使用 MNP-BV 系统来提供优化的 CRISPR/Cas9 活性的空间和时间控制。
CRISPR/Cas9 对组织肿瘤中免疫抑制信号 PD-L1 和 TGF-β 进行基因破坏。
将使用两种成熟的小鼠模型评估 CRISPR/Cas9 诱导的抗肿瘤免疫反应,
免疫原性模型 (MC38),其中 PD-1 阻断的单一疗法就足够了,并且非免疫原性
胰腺导管腺癌 (PDAC) 模型,描绘了大多数非免疫原性人类实体
在目标 1 研究中,我们将设计和优化 CRISPR/Cas9。
靶向PD-L1和TGF-β的gRNA,将Cas9和gRNA包装到BV载体中,并构建MNP-
BV 系统在目标 2 研究中,我们将评估细胞培养中 MNP-BV 诱导的多重基因破坏,
并确定目标 3 的研究中,我们将测试受控的体内插入缺失率。
CRISPR/Cas9 的递送,确定局部基因破坏与局部基因破坏的免疫学和治疗效果
在小鼠肿瘤模型中使用拮抗剂抗体进行全身阻断将是所提出的研究的成功。
提供多重瘤内免疫工程平台,为临床转化铺平道路
用于个性化癌症免疫治疗的高效体内基因组编辑策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheng Tong其他文献
Sheng Tong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheng Tong', 18)}}的其他基金
Precise in vivo gene editing of HSPC for the treatment of genetic hematologic diseases
HSPC体内精准基因编辑治疗遗传性血液病
- 批准号:
10548540 - 财政年份:2023
- 资助金额:
$ 16.94万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10456001 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
10047963 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
Controllable In Vivo Genome Editing for Immune-Checkpoint Blockade in Solid Tumors
用于实体瘤免疫检查点封锁的可控体内基因组编辑
- 批准号:
9939589 - 财政年份:2018
- 资助金额:
$ 16.94万 - 项目类别:
相似海外基金
Evaluating the relationship between immune checkpoint inhibitors and osteoarthritis
评估免疫检查点抑制剂与骨关节炎之间的关系
- 批准号:
10577306 - 财政年份:2023
- 资助金额:
$ 16.94万 - 项目类别:
Randomized Phase II Trial of Prolonged Overnight Fasting and/or Exercise on Fatigue and Other Patient Reported Outcomes in Women with Hormone Receptor Positive Advanced Breast Cancer (FastER)
长期隔夜禁食和/或运动对激素受体阳性晚期乳腺癌女性患者疲劳和其他患者报告结果的随机 II 期试验 (FastER)
- 批准号:
10714371 - 财政年份:2023
- 资助金额:
$ 16.94万 - 项目类别:
Evaluation of Subtractive Immunopheresis for Treatment of Hormone-Refractive Advanced Breast Cancer
减法免疫去除术治疗激素折射晚期乳腺癌的评价
- 批准号:
10483880 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Psilocybin Therapy for Advanced Cancer-related Psychiatric Distress
裸盖菇素治疗晚期癌症相关精神困扰
- 批准号:
10659059 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别:
Psilocybin Therapy for Advanced Cancer-related Psychiatric Distress
裸盖菇素治疗晚期癌症相关精神困扰
- 批准号:
10534022 - 财政年份:2022
- 资助金额:
$ 16.94万 - 项目类别: