Administrative Supplement for a Turnkey Fluorescence Microscope: Riboswitch mechanism unraveled at the single molecule level
交钥匙荧光显微镜的管理补充:在单分子水平上揭示核糖开关机制
基本信息
- 批准号:9894327
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:5&apos Untranslated Regions7-deazaguanineAddressAdministrative SupplementAdoptedAffectAwardBacteriaBacterial RNABehaviorBindingBiochemicalBiologicalBiological AssayBiological ModelsBiologyBiophysicsBuffersCalorimetryCatalysisCell ExtractsCell physiologyCodeCommunicationComplexComputer SimulationConsensusCouplingCrowdingCrystallizationDNA-Directed RNA PolymeraseDataElectrostaticsEnvironmentEnzymatic BiochemistryEscherichia coliFluorescence MicroscopyFundingGene ExpressionGenesGenetic TranscriptionGoalsGrantGuanineHome environmentIn VitroIndividualInfrastructureIsomerismKineticsLabelLearningLengthLifeLigand BindingLigandsMediatingMessenger RNAMicroscopeMicroscopyMolecularMolecular BiologyMolecular ConformationNational Institute of General Medical SciencesOutcomePathway interactionsPhysiologicalPlayPostdoctoral FellowProcessProtein SubunitsRNARNA ConformationRNA FoldingRNA SequencesRNA SplicingRNA analysisReadinessRibosomesRoleRotationSiteSmall RNASpeedStructureStudentsTechniquesTemperatureTestingTimeTitrationsTrainingTranscriptional RegulationTranslation InitiationTranslationsUntranslated RNAUpdateWorkX-Ray Crystallographyaptamerbiophysical analysiscofactordesignfluorescence microscopegene functiongraduate studenthairpin ribozymeinnovationinsightinstrumentinstrumentationmembernanomachinenanoscalenovelparent grantresponsesingle moleculesingle-molecule FRETtooltranslation assayundergraduate student
项目摘要
PROJECT SUMMARY:
This supplement will critically update the instrumentation available for all aspects of the parent grant, Riboswitch
mechanism unraveled at the single molecule level, as well as all 3.5 NIGMS R01 grants of the PI that are currently
pending conversion into a single R35 MIRA award, entitled The RNA nanomachines of gene expression
dissected at the single molecule level. The most critical aspects of the proposed instrumentation, the ONI
Nanoimager S, are its versatility, turnkey readiness, and ease of use. These features will dramatically facilitate
access by the diverse group of postdoctoral fellows, graduate students and undergraduate students in the PI’s
group to a plethora of single molecule fluorescence microscopy tools. In turn, these tools are leveraged directly
by the parent grant, which is focused on dissecting the mechanisms of the nanoscale RNA machines of gene
expression at the single molecule level. Building on our group’s 20-year expertise in this space, we aim to: 1.)
Apply our established mechanistic enzymology approaches to an ever broader set of RNAs involved in regulating
transcription, translation and splicing, seizing the opportunities arising from the continuing discoveries of new
functional RNAs. 2.) Push the limits of our approaches to be able to probe increasingly complex biological
contexts and mechanisms since unexpected discoveries often await where individual RNA nanomachines
interact. In pursuit of these aims, we will address the unifying hypothesis that dynamic RNA structures are a
major determinant of the outcomes of gene expression, as exemplified by the fact that nascent RNA structure
has a significant impact on both transcription and translation in the form of regulatory riboswitches embedded
near the 5’ ends of bacterial mRNAs. Exemplifying the power of our scientific approach to address our
hypothesis, we recently combined single-molecule, biochemical and computational simulation tools to show that
transcriptional pausing at a site immediately downstream of a riboswitch requires a ligand-free pseudoknot in
the nascent RNA, a precisely spaced consensus pause sequence, and electrostatic and steric interactions with
the exit channel of bacterial RNA polymerase. We posit that many more examples of similarly intimate structural
and kinetic coupling between RNA folding and gene expression remain to be discovered, leading to the exquisite
regulatory control enabling all life processes. To reveal more such couplings, we will probe the dynamics of
additional gene expression complexes using a tailored combination of single molecule fluorescence resonance
energy transfer (smFRET) and Single Molecule Kinetic Analysis of RNA Transient Structure (SiM-KARTS). A
major bottleneck in these pursuits so far has been the steep learning curve associated with our two home-built
microscopes that keeps new group members from making significant contributions until they have completed 1-
2 years of training. We anticipate that addition of the ONI Nanoimager S to our microscopy arsenal will transform
the speed of our progress by introducing an easy-to-use instrument that beginning postdocs, graduate and
undergraduate students can quickly use independently until they “graduate” to the home-built microscopes.
项目概要:
该补充品将严格更新可用于母基金 Riboswitch 各个方面的工具
在单分子水平上阐明的机制,以及目前 PI 的所有 3.5 NIGMS R01 资助
待转换为单一 R35 MIRA 奖,题为“基因表达的 RNA 纳米机器”
在单分子水平上剖析了所提出的仪器 ONI 最关键的方面。
Nanoimager S 的多功能性、交钥匙就绪性和易用性将极大地促进。
PI 中不同的博士后研究员、研究生和本科生群体可以访问
大量的单分子荧光显微镜工具反过来又被直接利用。
由家长资助,重点是剖析基因纳米级RNA机器的机制
基于我们团队在该领域 20 年的专业知识,我们的目标是:1.)
将我们已建立的机械酶学方法应用于更广泛的参与调节的 RNA
转录、翻译和剪接,抓住不断发现新事物所带来的机会
2.) 突破我们方法的极限,能够探测日益复杂的生物。
背景和机制,因为意想不到的发现经常等待着个体 RNA 纳米机器
为了实现这些目标,我们将解决动态 RNA 结构是一个统一的假设。
基因表达结果的主要决定因素,例如新生 RNA 结构
以嵌入的调节核糖开关的形式对转录和翻译产生重大影响
靠近细菌 mRNA 的 5' 末端,体现了我们的科学方法解决我们的问题的力量。
假设,我们最近结合了单分子、生化和计算模拟工具来证明
核糖开关下游位点的转录暂停需要无配体的假结
新生 RNA、精确间隔的共有暂停序列以及静电和空间相互作用
我们假设还有更多类似紧密结构的例子。
RNA折叠和基因表达之间的动力学耦合仍有待发现,从而导致了精细的研究
为了揭示更多这样的耦合,我们将探讨其动态。
使用单分子荧光共振的定制组合产生额外的基因表达复合物
能量转移 (smFRET) 和 RNA 瞬时结构的单分子动力学分析 (SiM-KARTS)。
到目前为止,这些追求的主要瓶颈是与我们的两个自制的相关的陡峭的学习曲线
显微镜阻止新小组成员做出重大贡献,直到他们完成 1-
我们预计,ONI Nanoimager S 添加到我们的显微镜武器库中将会带来 2 年的培训。
通过引入一种易于使用的工具来加快我们的进步速度,该工具可以帮助刚开始博士后、研究生和
本科生可以快速独立使用,直至“毕业”到自制显微镜。
项目成果
期刊论文数量(75)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular dynamics suggest multifunctionality of an adenine imino group in acid-base catalysis of the hairpin ribozyme.
分子动力学表明腺嘌呤亚氨基在发夹核酶的酸碱催化中具有多功能性。
- DOI:10.1261/rna.1416709
- 发表时间:2009-04-01
- 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
Significant kinetic solvent isotope effects in folding of the catalytic RNA from the hepatitis delta virus.
动力学溶剂同位素对 δ 型肝炎病毒催化 RNA 的折叠有显着影响。
- DOI:
- 发表时间:2003-11-19
- 期刊:
- 影响因子:15
- 作者:Tinsley, Rebecca A;Harris, Dinari A;Walter, Nils G
- 通讯作者:Walter, Nils G
Hyperosmotic phase separation: Condensates beyond inclusions, granules and organelles.
高渗相分离:包含物、颗粒和细胞器之外的冷凝物。
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jalihal, Ameya P;Schmidt, Andreas;Gao, Guoming;Little, Saffron R;Pitchiaya, Sethuramasundaram;Walter, Nils G
- 通讯作者:Walter, Nils G
Precise tuning of bacterial translation initiation by non-equilibrium 5'-UTR unfolding observed in single mRNAs.
通过在单个 mRNA 中观察到的非平衡 5-UTR 解折叠来精确调节细菌翻译起始。
- DOI:
- 发表时间:2022-08-26
- 期刊:
- 影响因子:14.9
- 作者:Ray, Sujay;Dandpat, Shiba S;Chatterjee, Surajit;Walter, Nils G
- 通讯作者:Walter, Nils G
Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance.
RNA 的单分子酶学:重要的官能团远距离影响催化作用。
- DOI:
- 发表时间:2004-07-06
- 期刊:
- 影响因子:0
- 作者:Rueda, David;Bokinsky, Gregory;Rhodes, Maria M;Rust, Michael J;Zhuang, Xiaowei;Walter, Nils G
- 通讯作者:Walter, Nils G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NILS G WALTER其他文献
NILS G WALTER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NILS G WALTER', 18)}}的其他基金
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
10390477 - 财政年份:2019
- 资助金额:
$ 24.98万 - 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
9920170 - 财政年份:2019
- 资助金额:
$ 24.98万 - 项目类别:
Administrative Supplement for a Cytosurge FluidFM OMNIUM instrument: The RNA nanomachines of the gene expression machinery dissected at the single molecule level
Cytosurge FluidFM OMNIUM 仪器的行政补充:在单分子水平上解剖的基因表达机器的 RNA 纳米机器
- 批准号:
10797186 - 财政年份:2019
- 资助金额:
$ 24.98万 - 项目类别:
The RNA nanomachines of the gene expression machinery dissected at the single molecule level
在单分子水平上剖析基因表达机器的RNA纳米机器
- 批准号:
10613420 - 财政年份:2019
- 资助金额:
$ 24.98万 - 项目类别:
Single-molecule counting of cancer biomarker miRNAs in human biofluids
人体生物体液中癌症生物标志物 miRNA 的单分子计数
- 批准号:
9233284 - 财政年份:2017
- 资助金额:
$ 24.98万 - 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
- 批准号:
9079585 - 财政年份:2016
- 资助金额:
$ 24.98万 - 项目类别:
Cotranscriptional folding of single riboswitches
单个核糖开关的共转录折叠
- 批准号:
9357619 - 财政年份:2016
- 资助金额:
$ 24.98万 - 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
- 批准号:
8641463 - 财政年份:2013
- 资助金额:
$ 24.98万 - 项目类别:
HCV biology and inhibition visualized at the single molecule level
HCV 生物学和抑制在单分子水平上可视化
- 批准号:
8785654 - 财政年份:2013
- 资助金额:
$ 24.98万 - 项目类别:
Spliceosome Mechanism Dissected at the Single Molecule Level
单分子水平剖析剪接体机制
- 批准号:
8415518 - 财政年份:2012
- 资助金额:
$ 24.98万 - 项目类别:
相似海外基金
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Understanding resistance mechanisms to protein arginine methyltransransferase Inhibitors in Lymphoma
了解淋巴瘤对蛋白精氨酸甲基转移酶抑制剂的耐药机制
- 批准号:
10668754 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
- 批准号:
10667049 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Development of a novel site-and cell-selective mRNA therapeutic to treat atherosclerosis
开发一种新的位点和细胞选择性 mRNA 治疗剂来治疗动脉粥样硬化
- 批准号:
10679992 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别: