Microenivironment Dimensionality Modulates Neuronal Signaling
微环境维度调节神经信号
基本信息
- 批准号:7742254
- 负责人:
- 金额:$ 32.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesArchitectureBehaviorBiochemicalBiocompatibleBiocompatible MaterialsBiologicalBiopolymersCell Adhesion MoleculesCell SurvivalCell-Matrix JunctionCellsCellular MorphologyClinicalControlled EnvironmentCuesCytoskeletonDataDiffusionEngineeringEnvironmentExtracellular MatrixFibronectinsFutureGelGoalsHypoxiaIn VitroIntegrinsInvestigationKnowledgeLaboratoriesLaboratory StudyLamininLigandsMeasurementMeasuresMethodsMorphologyMusNerveNeuritesNeurobiologyNeuronsNormal tissue morphologyOutcomeOxygenPTK2 genePeptidesPerformancePharmacologic SubstancePhysiologyPlayProcessPropertyReporterRoleSignal PathwaySignal TransductionSignaling MoleculeSpinal GangliaSpinal cord injuryStrokeSystemTestingTissuesTranslatingVinculinWorkWound Healingbasecell typedensitydesignimprovedin vivoneuronal survivalneurophysiologynext generationnovelphysical propertypublic health relevancerelating to nervous systemrepairedresearch studyresponsescaffoldsuccessthree dimensional structuretooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Translating information from two-dimensional (2D) culture into three-dimensional (3D) systems has been a major hurdle in the use of biopolymers for tissue repair applications. In order to design improved culture environments and responsive architectures for neuronal repair, our goal is to advance the understanding of how neurons respond to 3D environments. We hypothesize that 3D culture 1) imposes changes in matrix ligand organization that directly alter neuronal behavior by modulating 1 integrin-cytoskeletal signaling and 2) imposes changes in dissolved oxygen profiles. Therefore substrate dimensionality is a critical factor for neuronal survival and re-establishment of functional connectivity required for the success of cell-based neural therapies. To test this hypothesis, we will first investigate the roles of 1 integrin, vinculin, FAK and pFAK in DRG neurite outgrowth in 3D laminin culture scaffolds (Aim 1). We will then optimize the 3D culture scaffolds to maximize neurite outgrowth and determine whether the type of 1 integrin ligands impacts integrin signaling during neurite outgrowth in 3D scaffolds (Aim 2). Finally, we will determine how oxygen concentration impacts neuronal survival and outgrowth in 3D culture by applying novel oxygen-sensing microparticles to directly measure spatial and temporal dissolved oxygen profiles (Aim 3). Our preliminary studies indicate that 3D culture imposes changes in 1 integrin signaling that result in altered neurite outgrowth. To study this effect in more detail, we have established two novel tools to provide quantitative data in a physiologically relevant 3D system. First, we have developed a 3D culture system with controllable physical and biochemical material properties. Second, we have developed novel fluorescent oxygen-sensing microparticles to detect spatial and temporal changes in dissolved oxygen content. The microparticles demonstrate sensing performance comparable to traditional electrochemical probes, but are biocompatible and allow rapid, automated and non-invasive measurements local to cells and without consuming oxygen. Based on these studies, we will use cellular and environmental markers of neural morphology and dissolved oxygen to design a system that recapitulates tissue physiology. Our studies will delineate key signaling mechanisms to provide a biological basis for testing new 3D nerve repair therapies. Moreover, the adaptability of the proposed tunable synthetic gels allows for the addition of other biomolecules, pharmaceuticals, reporter constructs and cell types. Thus, the tunable synthetic gels will have broad utility towards investigations of permissive/inhibitory matrix cues as well as neuronal-glial interactions in normal and diseased states. The proposed project will provide new fundamental knowledge about neuronal response to 3D microenvironments and will enable the improved design of future biomaterials-based approaches for neural repair. PUBLIC HEALTH RELEVANCE: Much of our current understanding of neurobiology relies on disrupted tissues, laboratory studies in artificial environments, and clinical observations. We hypothesize that the next generation of nerve repair therapies relies on the design of materials that better replicate the three-dimensional structure and physiology of native tissues. The goals of this proposed work is to advance the understanding of neuronal response to three-dimensional environments and to provide new improved materials and tools to study and repair neurons.
描述(由申请人提供):将二维(2D)培养物的信息转化为三维(3D)系统一直是使用生物聚合物进行组织修复应用的主要障碍。 为了设计改进的培养环境和用于神经元修复的响应架构,我们的目标是加深对神经元如何响应 3D 环境的理解。 我们假设 3D 培养 1) 使基质配体组织发生变化,通过调节 1 整合素-细胞骨架信号传导直接改变神经元行为,2) 使溶解氧分布发生变化。 因此,基质维度是神经元存活和重建基于细胞的神经疗法成功所需的功能连接的关键因素。 为了检验这一假设,我们将首先研究 1 整合素、纽蛋白、FAK 和 pFAK 在 3D 层粘连蛋白培养支架中 DRG 神经突生长中的作用(目标 1)。 然后,我们将优化 3D 培养支架,以最大化神经突生长,并确定 1 整合素配体的类型是否影响 3D 支架中神经突生长期间的整合素信号传导(目标 2)。 最后,我们将通过应用新型氧传感微粒直接测量空间和时间溶解氧分布来确定氧气浓度如何影响 3D 培养中的神经元存活和生长(目标 3)。 我们的初步研究表明,3D 培养会改变 1 整合素信号,从而导致神经突生长发生改变。 为了更详细地研究这种效应,我们建立了两种新颖的工具来在生理相关的 3D 系统中提供定量数据。 首先,我们开发了具有可控物理和生化材料特性的3D培养系统。 其次,我们开发了新型荧光氧传感微粒来检测溶解氧含量的空间和时间变化。 这些微粒表现出与传统电化学探针相当的传感性能,但具有生物相容性,可以在细胞局部进行快速、自动化和非侵入性测量,且不消耗氧气。 基于这些研究,我们将使用神经形态和溶解氧的细胞和环境标记来设计一个概括组织生理学的系统。 我们的研究将描绘关键的信号传导机制,为测试新的 3D 神经修复疗法提供生物学基础。 此外,所提出的可调谐合成凝胶的适应性允许添加其他生物分子、药物、报告构建体和细胞类型。 因此,可调谐合成凝胶将在研究允许/抑制基质线索以及正常和患病状态下的神经元-胶质细胞相互作用方面具有广泛的用途。 拟议的项目将提供有关神经元对 3D 微环境的反应的新基础知识,并将改进未来基于生物材料的神经修复方法的设计。 公共健康相关性:我们目前对神经生物学的理解大部分依赖于破坏的组织、人工环境中的实验室研究和临床观察。 我们假设下一代神经修复疗法依赖于更好地复制天然组织的三维结构和生理学的材料设计。 这项工作的目标是增进对神经元对三维环境的反应的理解,并提供新的改进材料和工具来研究和修复神经元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennie B Leach其他文献
Jennie B Leach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennie B Leach', 18)}}的其他基金
Microenivironment Dimensionality Modulates Neuronal Signaling
微环境维度调节神经信号
- 批准号:
8018569 - 财政年份:2009
- 资助金额:
$ 32.43万 - 项目类别:
Microenivironment Dimensionality Modulates Neuronal Signaling
微环境维度调节神经信号
- 批准号:
8228076 - 财政年份:2009
- 资助金额:
$ 32.43万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cell cycle control of cell polarity and fate in epidermal morphogenesis
表皮形态发生中细胞极性和命运的细胞周期控制
- 批准号:
10608036 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Decoding cortical Notch signaling and morphogenic instruction at cell-cell interfaces
解码细胞-细胞界面的皮质Notch信号传导和形态发生指令
- 批准号:
10714471 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Mechanisms guiding the fibrillar assembly of SNED1 in the extracellular matrix
指导细胞外基质中 SNED1 纤维组装的机制
- 批准号:
10733534 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别:
Netrin Glycosylation Influences Chemotaxis and Haptotaxis
Netrin 糖基化影响趋化性和趋触性
- 批准号:
10665243 - 财政年份:2023
- 资助金额:
$ 32.43万 - 项目类别: