3D-Fast Optical Interface for Rapid Volumetric Neural Sensing and Modulation

用于快速体积神经传感和调制的 3D 快速光学接口

基本信息

  • 批准号:
    9764370
  • 负责人:
  • 金额:
    $ 18.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary To further our understanding of the function of neural circuits, there is a need for new tools that can collect simultaneous measurements from large populations of neurons involved in a common neural computation and provide precise functional modulation. Optical imaging in awake animals expressing calcium indicators provides real-time functional and spatial information from individual neurons within local neural circuits. The limitations of current imaging technology include small fields of view encompassing single brain regions, and the requirement for head fixation, which prevents naturalistic behavior. In addition, most optical imaging systems do not allow for simultaneous high-resolution functional imaging in combination with spatially-localized optogenetic modulation. To meet this challenge, we propose to develop an optical device (`3D-FAST') that allows for rapid, real-time volumetric neural recording and precise optical stimulation. By pairing miniature arrays of micropatterned LED emitters with the axial focusing capabilities of electrowetting lens technologies, we will achieve duplex recording and stimulation of many thousands of neurons. Through utilization of novel 3D-printed scaffolding, we will be able to create modular, expandable, customizable lens arrays that allow for recording of large-scale bi-directional neural interfaces for closed-loop modulation of neural circuits. We will create the 3D-FAST device through assembly of modular optical elements in a 3D-printed scaffolding. The initial device will be tested in in the anesthetized mouse during the presentation of visual stimuli. Optogenetic stimulation will be used to bias circuit function. In sum, these experiments will demonstrate the unique capabilities of the 3D-FAST technology. Rapid, high- resolution imaging of calcium transients from a volume of tissue will be paired with spatially-restricted light delivery for optogenetic neural modulation. The optical imaging properties will be compared with ground-truth two-photon microscopy, and the functional consequence of neuromodulation will be dissected through circuit modulation. The 3D-FAST tool will bring novel capabilities to measuring and modulating large populations of neurons in animals, to better understand the neural computations that underlie behavior. In addition, this body of work will lay the ground for future development of fully implantable optical recording and modulating units for use in freely-moving, untethered naturalistic behavior experiments.
项目概要 为了进一步了解神经回路的功能,需要新的工具来收集 来自参与共同神经计算的大量神经元的同时测量 提供精确的功能调制。表达钙指示剂的清醒动物的光学成像 提供来自局部神经回路内单个神经元的实时功能和空间信息。这 当前成像技术的局限性包括包含单个大脑区域的小视野,以及 头部固定的要求,这会阻止自然行为。此外,大多数光学成像 系统不允许同时进行高分辨率功能成像与空间定位相结合 光遗传学调制。 为了应对这一挑战,我们建议开发一种光学设备(“3D-FAST”),可以快速、实时 体积神经记录和精确的光刺激。通过配对微图案 LED 微型阵列 具有电润湿透镜技术的轴向聚焦能力的发射器,我们将实现双工 记录和刺激数千个神经元。通过利用新型 3D 打印脚手架, 我们将能够创建模块化、可扩展、可定制的透镜阵列,以记录大规模的 用于神经电路闭环调制的双向神经接口。我们将创建 3D-FAST 设备 通过在 3D 打印的脚手架中组装模块化光学元件。初始设备将在 呈现视觉刺激期间麻醉的小鼠。光遗传学刺激将用于偏置 电路功能。 总之,这些实验将展示 3D-FAST 技术的独特功能。快速、高 来自一定体积组织的钙瞬变的分辨率成像将与空间受限的光配对 光遗传学神经调节的传递。光学成像特性将与地面实况进行比较 双光子显微镜,神经调节的功能结果将通过电路进行剖析 调制。 3D-FAST 工具将为测量和调节大量 动物的神经元,以更好地理解行为背后的神经计算。另外,这个身体 的工作将为未来开发完全植入式光学记录和调制单元奠定基础 用于自由移动、不受束缚的自然行为实验。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miniature structured illumination microscope for in vivo 3D imaging of brain structures with optical sectioning.
微型结构照明显微镜,用于通过光学切片对大脑结构进行活体 3D 成像。
  • DOI:
  • 发表时间:
    2022-04-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Supekar, Omkar D;Sias, Andrew;Hansen, Sean R;Martinez, Gabriel;Peet, Graham C;Peng, Xiaoyu;Bright, Victor M;Hughes, Ethan G;Restrepo, Diego;Shepherd, Douglas P;Welle, Cristin G;Gopinath, Juliet T;Gibson, Emily A
  • 通讯作者:
    Gibson, Emily A
MicroLED light source for optical sectioning structured illumination microscopy.
用于光学切片结构照明显微镜的 MicroLED 光源。
  • DOI:
  • 发表时间:
    2023-05-08
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Kumar, Vikrant;Behrman, Keith;Speed, Forest;Saladrigas, Catherine A;Supekar, Omkar;Huang, Zicong;Bright, Victor M;Welle, Cristin G;Restrepo, Diego;Gopinath, Juliet T;Gibson, Emily A;Kymissis, Ioannis
  • 通讯作者:
    Kymissis, Ioannis
Enhanced microLED efficiency via strategic pGaN contact geometries.
  • DOI:
    10.1364/oe.425800
  • 发表时间:
    2021-04-28
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Keith Behrman;Ioannis Kymissis
  • 通讯作者:
    Ioannis Kymissis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily Gibson其他文献

Emily Gibson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily Gibson', 18)}}的其他基金

Development of 3D-FAST Optical Interface for Rapid Volumetric Neural Sensing and Modulation
开发用于快速体积神经传感和调制的 3D-FAST 光学接口
  • 批准号:
    10294019
  • 财政年份:
    2021
  • 资助金额:
    $ 18.97万
  • 项目类别:
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
  • 批准号:
    10241846
  • 财政年份:
    2020
  • 资助金额:
    $ 18.97万
  • 项目类别:
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
  • 批准号:
    10216476
  • 财政年份:
    2020
  • 资助金额:
    $ 18.97万
  • 项目类别:
Shedding light on brain circuits mediating navigation of the odor plume in a natural environment
揭示自然环境中调节气味羽流的大脑回路
  • 批准号:
    10216476
  • 财政年份:
    2020
  • 资助金额:
    $ 18.97万
  • 项目类别:
Controlled neuronal firing in vivo using two photon spatially shaped optogenetics
使用两个光子空间形状光遗传学控制体内神经元放电
  • 批准号:
    9404641
  • 财政年份:
    2017
  • 资助金额:
    $ 18.97万
  • 项目类别:
Controlled neuronal firing in vivo using two photon spatially shaped optogenetics
使用两个光子空间形状光遗传学控制体内神经元放电
  • 批准号:
    9770567
  • 财政年份:
    2017
  • 资助金额:
    $ 18.97万
  • 项目类别:

相似国自然基金

自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
  • 批准号:
    22309176
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
  • 批准号:
    52375150
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
  • 批准号:
    52303036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 18.97万
  • 项目类别:
A novel breast cancer therapy based on secreted protein ligands from CD36+ fibroblasts
基于 CD36 成纤维细胞分泌蛋白配体的新型乳腺癌疗法
  • 批准号:
    10635290
  • 财政年份:
    2023
  • 资助金额:
    $ 18.97万
  • 项目类别:
3D Printed Microfluidic Artificial Lung for Veteran Rehabilitation
用于退伍军人康复的 3D 打印微流控人工肺
  • 批准号:
    10629531
  • 财政年份:
    2023
  • 资助金额:
    $ 18.97万
  • 项目类别:
Organizing and Reorganizing Human Testis Development In Vitro
体外组织和重组人类睾丸发育
  • 批准号:
    10817412
  • 财政年份:
    2023
  • 资助金额:
    $ 18.97万
  • 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
  • 批准号:
    10672642
  • 财政年份:
    2023
  • 资助金额:
    $ 18.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了