Mechanisms of Physiologic and Pathologic Osteoclastogenesis
破骨细胞发生的生理和病理机制
基本信息
- 批准号:9889901
- 负责人:
- 金额:$ 33.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlanineAutophagocytosisBindingBiochemicalBone MarrowCell physiologyCellsComplexCuesDiseaseElementsExposure toFeedbackGenesHomeostasisIL6 geneImpairmentIn VitroInflammationInflammation MediatorsInflammatoryInterferonsJointsKnock-inKnock-in MouseKnowledgeLeadLysineMediatingModalityModelingModificationMolecularMolecular ProfilingMolecular TargetMusMutateMutationMutation AnalysisMyelogenousNF-kappa BNuclearOsteoclastsOsteolysisOsteopeniaOutcomePathologicPathologyPathway interactionsPhosphotransferasesPhysiologicalPolyubiquitinationPost-Translational Protein ProcessingProcessProductionProteinsProteomicsRegulationResearchRoleSideSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSiteSkeletal DevelopmentSpecificityStimulusSystemTNF geneUbiquitin Like Proteinsbasebonebone losscell typecombatcytokineexperimental studygain of functionin vivojoint destructionlong bonemacrophagemonocytemutantnovelnovel therapeuticsosteoclastogenesisprogenitorprotein complexrecruitresponsescaffoldskeletalsubchondral bonetargeted treatmenttranscription factor
项目摘要
ABSTRACT:
The transcription factor NF-kB is expressed ubiquitously in all cell types and is readily activated by numerous
factors and cytokines. Baseline NF-kB activity is essential for skeletal development and physiologic cellular
functions. In contrast, its exacerbated and often uncontrolled activity during inflammation leads to undesired
harmful effects with major dysfunctional consequences including osteolysis. Hence, therapies targeting NF-kB
have been highly pursued to combat most inflammatory diseases. Unfortunately, most available therapies are
inefficient owing to lack of selectivity in such complex and ubiquitous signaling pathway wherein the essential
beneficial functions of NF-kB are blocked along side the harmful effects leading to detrimental outcomes.
Therefore, there is an unmet need to decode NF-kB signaling to identify specific targets that assign
signal specificity and distinguish between physiologic and pathologic functions. To address this critical
knowledge gap, we focused on RANKL-induced osteoclastogenesis as a proof of concept and set out to
decipher the NF-kB molecular machinery and identify the signal-specific molecular signature that controls this
response in osteoclast progenitors and maintains skeletal homeostasis. We hypothesize that the IKK scaffold
IKKγ/NEMO serves as a platform that site-specifically assembles unique signal activating or suppressing
protein complexes in cell and stimulus specific manners. This hypothesis is based on recent advances
implicating NEMO as a scaffold that integrates signaling molecules in response to a wide range of stimuli at
lysine (K) specific sites (refer to Fig 2). These modifications include, lysine poly-ubiquitination,
SUMOylation, and according to our novel finding, ISGylation; a process of attaching the ubiquitin-like protein,
ISG15 (IFN-stimulated gene) to target proteins. We conduced comprehensive NEMO lysine mutational
analysis and identified the NEMO K270 residue as a crucial RANKL-regulation target. Specifically, NEMO
harboring K270A mutation (NEMOK270A) elicits exacerbated osteoclastogenesis. More importantly, myeloid
knock-in mice of the NEMOK270A that we generated displayed severe osteopenia and osteolysis.
Mechanistically, autophagy is significantly decreased in NEMOK270A BMMs. Furthermore, proteomic screen
identified interferon-stimulated gene-15 (ISG15) as a potential regulator of osteoclastogenesis and autophagy.
Thus, our overarching hypothesis is: RANKL-induced binding of ISG15 to NEMO at K270 is essential to
restrain osteoclastogenesis by assembling a negative-feedback response. We further posit that mutating K270
hinders this regulatory process leading to reduced autophagy and uncontrolled osteoclastogenesis. Our aims
are: Aim 1: Determine the mechanism by which NEMO, through its K270 site, maintains physiologic
and restrains pathologic/exacerbated osteoclastogenesis.
Aim 2: Determine the role of RANKL-induced ISG15 as the ubiquitin-like protein that facilitates NEMO-
K270-mediated autophagy and control of physiologic osteoclastogenesis.
抽象的:
转录因子 NF-kB 在所有细胞类型中普遍表达,并且很容易被多种细胞激活。
因子和细胞因子的基线 NF-kB 活性对于骨骼发育和生理细胞至关重要。
相反,它在炎症过程中加剧且常常不受控制的活动会导致不良后果。
具有主要功能障碍后果(包括骨质溶解)的有害影响,因此,针对 NF-kB 的治疗。
不幸的是,大多数可用的治疗方法都受到高度重视。
由于这种复杂且普遍存在的信号通路缺乏选择性,效率低下,因此至关重要
NF-kB 的有益功能与导致痛苦结果的有害作用一起被阻断。
因此,解码 NF-kB 信号传导以识别分配的特定目标的需求尚未得到满足。
信号特异性并区分生理和病理功能以解决这一关键问题。
知识差距,我们专注于 RANKL 诱导的破骨细胞生成作为概念证明,并着手
破译 NF-kB 分子机制并识别控制该机制的信号特异性分子特征
破骨细胞祖细胞的反应并维持骨骼稳态
IKKγ/NEMO 作为一个平台,可在位点特异性地组装独特的信号激活或抑制
该假设基于最新进展。
暗示 NEMO 作为一个支架,整合信号分子以响应各种刺激
赖氨酸 (K) 特定位点(参见图 2)。
SUMOylation,根据我们的新发现,ISGylation;附着泛素样蛋白的过程,
我们对目标蛋白 ISG15(IFN 刺激基因)进行了全面的 NEMO 赖氨酸突变。
分析并确定 NEMO K270 残基是关键的 RANKL 调节目标。
携带 K270A 突变 (NEMOK270A) 会引起破骨细胞生成加剧,更重要的是,骨髓细胞生成加剧。
我们生成的 NEMOK270A 敲入小鼠表现出严重的骨质减少和骨溶解。
从机制上讲,NEMOK270A BMM 中的自噬显着降低。此外,蛋白质组筛选。
确定干扰素刺激基因 15 (ISG15) 是破骨细胞生成和自噬的潜在调节因子。
因此,我们的总体假设是:RANKL 诱导的 ISG15 与 NEMO 在 K270 处的结合对于
我们进一步假设突变 K270 来抑制破骨细胞生成。
阻碍这一调节过程,导致自噬减少和破骨细胞生成不受控制。
目标 1:确定 NEMO 通过其 K270 位点维持生理功能的机制
并抑制病理性/加剧的破骨细胞生成。
目标 2:确定 RANKL 诱导的 ISG15 作为泛素样蛋白的作用,促进 NEMO-
K270 介导的自噬和生理破骨细胞生成的控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOUSEF ABU-AMER其他文献
YOUSEF ABU-AMER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOUSEF ABU-AMER', 18)}}的其他基金
Regulation of Osteoclastogenesis and Inflammatory Osteolysis
破骨细胞生成和炎性骨质溶解的调节
- 批准号:
10681786 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
Mechanisms of Physiologic and Pathologic Osteoclastogenesis
破骨细胞发生的生理和病理机制
- 批准号:
10380048 - 财政年份:2018
- 资助金额:
$ 33.55万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
8635282 - 财政年份:2008
- 资助金额:
$ 33.55万 - 项目类别:
Mechanisms of IKK Regulation of Basal and Inflammatory Osteoclastogenesis
IKK 调节基础和炎症破骨细胞生成的机制
- 批准号:
7651373 - 财政年份:2008
- 资助金额:
$ 33.55万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
9017945 - 财政年份:2008
- 资助金额:
$ 33.55万 - 项目类别:
Molecular Mechanisms Underlying Tak1 Function in Osteoclasts
破骨细胞中 Tak1 功能的分子机制
- 批准号:
8501884 - 财政年份:2008
- 资助金额:
$ 33.55万 - 项目类别:
Mechanisms of IKK Regulation of Basal and Inflammatory Osteoclastogenesis
IKK 调节基础和炎症破骨细胞生成的机制
- 批准号:
8240429 - 财政年份:2008
- 资助金额:
$ 33.55万 - 项目类别:
Mechanisms of IKK Regulation of Basal and Inflammatory Osteoclastogenesis
IKK 调节基础和炎症破骨细胞生成的机制
- 批准号:
7793408 - 财政年份:2008
- 资助金额:
$ 33.55万 - 项目类别:
相似国自然基金
基于iPSC来源的类器官模型研究PHOX2B丙氨酸重复序列突变在肠脑神经系统中的致病效应及分子机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
自由短肽微阵列用于高通量筛选二苯丙氨酸基抗菌肽
- 批准号:52303206
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
γ-干扰素介导SRSF3色氨酸-苯丙氨酸替代翻译在胃癌免疫微环境中的作用和机制研究
- 批准号:82303803
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道微生态介导的苯丙氨酸代谢在三七皂苷抑制缺血性脑卒中继发性血栓形成中的作用机制研究
- 批准号:82304488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新型聚合物点荧光探针的苯丙氨酸即时检测系统研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 3: The AMPK Autophagy Pathway as a Metabolic Liability in Pancratic Ductal Adenocarcinoma
项目 3:AMPK 自噬途径作为胰腺导管腺癌的代谢负担
- 批准号:
10629065 - 财政年份:2023
- 资助金额:
$ 33.55万 - 项目类别:
Develop and evaluate efficacy of nanoformulated siBeclin1 delivered intranasally to eliminate HIV in brain
开发并评估鼻内递送的纳米制剂 siBeclin1 消除大脑中 HIV 的功效
- 批准号:
9893032 - 财政年份:2019
- 资助金额:
$ 33.55万 - 项目类别:
Role for Sphingosine Kinase 1 in Serine Deprivation
鞘氨醇激酶 1 在丝氨酸剥夺中的作用
- 批准号:
10004160 - 财政年份:2018
- 资助金额:
$ 33.55万 - 项目类别:
Mechanisms of Physiologic and Pathologic Osteoclastogenesis
破骨细胞发生的生理和病理机制
- 批准号:
10380048 - 财政年份:2018
- 资助金额:
$ 33.55万 - 项目类别:
The contribution of the secretory pathway to macroautophagy
分泌途径对巨自噬的贡献
- 批准号:
9267517 - 财政年份:2016
- 资助金额:
$ 33.55万 - 项目类别: