Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
基本信息
- 批准号:9889960
- 负责人:
- 金额:$ 34.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAdenosineAnimal ModelArgonBiosensorBrainBrain regionCaliberCarbonChemicalsChemistryCommunicationComplexComputer softwareCustomDepositionDetectionDevelopmentDiscriminationDiseaseDopamineDrosophila genusElectrochemistryElectrodesElectron TransportFast ElectronFiberFrequenciesFutureGeometryGoalsHistamineHydrogen PeroxideImageImage AnalysisMeasurementMeasuresMetalsMicroelectrodesNeurotransmittersOxygenPrintingPropertyResearchResolutionRodentSamplingSerotoninShapesSurfaceTechniquesTechnologyTestingTimeTissuesTubeWorkbasecarbon fiberdesigndopaminergic neuronflexibilityin vivoinnovationinsightnanonanodiamondnanoelectrodesnanohornnanomaterialsnervous system disorderneurochemistryneurotransmissionnew technologynoveloxidationreal time monitoringsensorsubmicrontemporal measurementtoolvapor
项目摘要
PROJECT SUMMARY
Microelectrodes are popular for sensing real-time changes in neurotransmitters and understanding the
dynamics of neurotransmission in the brain. However, technology has changed little in three decades and
there are many unmet technological needs for in vivo electrochemical sensors. In particular, electrodes are
needed with high selectivity to discriminate different molecules, small enough tips to localize in small model
organisms, and geometries that enable global sensing at high temporal resolution. One new electrode is
unlikely to solve all these problems; instead, the electrochemical tool-kit needs to be expanded with many
types of electrode designs, materials, and fabrication strategies so that electrodes can be customized for the
application. The long term goal of my lab is to develop new electrodes for the measurement of real-time
changes of neurotransmitters in vivo and use them to understand real-time detection of neurotransmitter
dynamics in the brain. The goal of this project is to develop carbon nanomaterial electrodes, carbon
nanopipettes, and 3D printed electrodes with tunable selectivity, tip diameter, and geometry. In the first
specific aim, we will use carbon nanomaterials, surface treatments, custom waveforms, and imaging-based
software approaches to tune the oxidation of difficult to detect molecules and reduce biofouling. Discrimination
and co-detection of histamine, adenosine, and hydrogen peroxide will be targeted, as well as reduced fouling
by serotonin and its metabolites. In the second aim, carbon nanopipettes will be developed as nanoelectrodes
with tunable tip diameters that can sample from submicron regions, facilitating measurements in small
Drosophila brain regions without destroying the tissue. Different geometries will be compared, included
closed-tip, cavity, and open tube pipettes. In the third aim, a completely new way to make an electrode will be
explored: nano-3D printing. A Nanoscribe 3D printer with 500 nm printing resolution will be used and designs
then oxygen/argon annealed, which causes shrinking and carbonization. This 3D printing technique will enable
rational design of free-standing, high temporal resolution sensors and flexible carbon mesh electrodes that
measure neurotransmitters more globally. The result of this project will be many different kinds of electrodes
that enable many different neurochemical applications, from discriminating adenosine and histamine transients
in vivo, to dopamine detection in discrete Drosophila regions that are less than 10 m wide, to rapid
measurements of neurotransmission on a global scale. The significance of this project is that it will transform
in vivo microelectrode design to facilitate complex dynamic measurements of neurochemistry that will lead to a
better understanding of the how the brain functions and how if malfunctions during disease. The expected
positive impact of this new electrode design is thus new platforms of electrodes with tunable electrochemistry
to better understand real-time neurotransmission.
项目概要
微电极广泛用于感测神经递质的实时变化并了解神经递质的变化。
然而,技术在三十年来几乎没有变化。
体内电化学传感器还有许多未满足的技术需求,特别是电极。
需要高选择性来区分不同的分子,足够小的尖端以在小模型中定位
一种新的电极可以实现高时间分辨率的全局传感。
不太可能解决所有这些问题;相反,电化学工具包需要扩展许多
电极设计、材料和制造策略的类型,以便可以根据需要定制电极
我实验室的长期目标是开发用于实时测量的新电极。
体内神经递质的变化并利用它们来了解神经递质的实时检测
该项目的目标是开发碳纳米材料电极——碳。
纳米移液器和具有可调选择性、尖端直径和几何形状的 3D 打印电极。
针对具体目标,我们将使用碳纳米材料、表面处理、定制波形和基于成像的
软件方法可以调整难以检测的分子的氧化并减少生物污垢。
组胺、腺苷和过氧化氢的联合检测将成为目标,并减少污垢
通过血清素及其代谢物在第二个目标中,碳纳米移液器将被开发为纳米电极。
具有可调的尖端直径,可以从亚微米区域采样,便于在小范围内进行测量
将比较不破坏组织的果蝇大脑区域,包括。
第三个目标是采用封闭式吸头、空腔和开管移液器制造电极。
探索:将使用具有 500 nm 打印分辨率的 Nanoscribe 3D 打印机进行设计。
然后进行氧气/氩气退火,从而导致收缩和碳化,这种 3D 打印技术将成为可能。
独立式高时间分辨率传感器和柔性碳网电极的合理设计
该项目的成果将是在全球范围内测量神经递质。
使许多不同的神经化学应用成为可能,从区分腺苷和组胺瞬变
体内,对宽度小于 10 µm 的离散果蝇区域中的多巴胺进行快速检测
该项目的意义在于它将改变全球范围内的神经传递测量。
体内微电极设计,以促进神经化学的复杂动态测量,这将导致
更好地了解大脑如何运作以及疾病期间如何发生故障。
因此,这种新电极设计的积极影响是具有可调电化学的新电极平台
更好地理解实时神经传递。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B. JILL VENTON其他文献
B. JILL VENTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B. JILL VENTON', 18)}}的其他基金
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10522260 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Tunable Carbon Electrodes for in vivo Neurotransmitter Detection
用于体内神经递质检测的可调谐碳电极
- 批准号:
10656510 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10538604 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Multiplexed neurochemical methods to understand adenosine neuromodulation
多重神经化学方法了解腺苷神经调节
- 批准号:
10365275 - 财政年份:2022
- 资助金额:
$ 34.82万 - 项目类别:
Carbon nanotube fiber and yarn microelectrodes for high temporal resolution measu
用于高时间分辨率测量的碳纳米管纤维和纱线微电极
- 批准号:
8701642 - 财政年份:2014
- 资助金额:
$ 34.82万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8469587 - 财政年份:2012
- 资助金额:
$ 34.82万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
9043204 - 财政年份:2012
- 资助金额:
$ 34.82万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8387636 - 财政年份:2012
- 资助金额:
$ 34.82万 - 项目类别:
Mechanism and function of transient adenosine signaling in the brain
大脑中瞬时腺苷信号传导的机制和功能
- 批准号:
8651955 - 财政年份:2012
- 资助金额:
$ 34.82万 - 项目类别:
相似国自然基金
基于尿酸盐和三磷酸腺苷协同刺激痛风性关节炎发病新机制的动物模型构建和评估
- 批准号:81771774
- 批准年份:2017
- 资助金额:79.0 万元
- 项目类别:面上项目
慢性失眠鼠模型的建立及其神经生物学机制的初步研究
- 批准号:81671316
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:面上项目
基于光遗传学方法建立小鼠焦虑模型的研究
- 批准号:81571352
- 批准年份:2015
- 资助金额:110.0 万元
- 项目类别:面上项目
先天性黑矇症Nmnat1小鼠动物模型的建立及其发病机理与表型逆转干预的研究
- 批准号:31371271
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
腺苷受体在酒精依赖动物模型中对短期突触可塑性的调节作用
- 批准号:81000575
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Elucidating the Host Metabolic Response to Consumption of Kombucha-associated Microorganisms
阐明宿主对康普茶相关微生物消耗的代谢反应
- 批准号:
10678132 - 财政年份:2023
- 资助金额:
$ 34.82万 - 项目类别:
Therapy for ectopic calcification in pseudoxanthoma elasticum
弹力纤维假黄瘤异位钙化的治疗
- 批准号:
10763057 - 财政年份:2023
- 资助金额:
$ 34.82万 - 项目类别:
Extracellular redox biology links to metabolic and mitochondrial dysfunction in pulmonary hypertension
细胞外氧化还原生物学与肺动脉高压的代谢和线粒体功能障碍有关
- 批准号:
10750457 - 财政年份:2023
- 资助金额:
$ 34.82万 - 项目类别:
A single-arm phase II study to evaluate the safety and efficacy of combination systematic chemotherapy and multiple rounds of endoscopic ultrasound-guided radiofrequency ablation in pancreatic cancer
评估联合系统化疗和多轮内镜超声引导射频消融治疗胰腺癌的安全性和有效性的单组 II 期研究
- 批准号:
10743356 - 财政年份:2023
- 资助金额:
$ 34.82万 - 项目类别: