Early Identification of Acute Kidney Injury Using Deep Recurrent Neural Nets, Presented with Probable Etiology
使用深层循环神经网络早期识别急性肾损伤,并提出可能的病因
基本信息
- 批准号:9621546
- 负责人:
- 金额:$ 34.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2020-02-29
- 项目状态:已结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAddressAdmission activityAffectAreaBayesian ModelingClinicalClinical Decision Support SystemsClinical TrialsComputer softwareDataData SetDetectionDevelopmentDiagnosisDiagnosticDiagnostic ProcedureEarly identificationElectronic Health RecordEtiologyEventFatigueFutureGoalsHandHead Start ProgramHospital CostsHospital MortalityHospitalsHourHumanInjury to KidneyInpatientsKidneyKnowledgeLabelLaboratoriesLeadMachine LearningMeasurementMethodsMonitorPatient riskPatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPhasePhysical ExaminationPlant RootsProcessProspective StudiesRadiology SpecialtyRandomized Controlled TrialsReceiver Operating CharacteristicsRecurrenceRenal functionReportingResearchRiskRisk AssessmentSepsisSeriesSmall Business Innovation Research GrantSupervisionSyndromeSystemTestingTextTherapeuticTimeTrainingUnited StatesWorkbaseclinical decision supportcomputer based statistical methodseffective therapyexperienceexperimental studyimaging studyimprovedimproved outcomeinsightlearning strategymortalitynovelovertreatmentpredictive toolspreventprototyperapid diagnosisrecurrent neural networkrelating to nervous systemsuccesstooltrend
项目摘要
Abstract
Significance: In this SBIR project we propose to develop Previse, a novel, software-based clinical decision
support (CDS) system for predicting acute kidney injury (AKI), and attributing AKI to one of several causal
mechanisms (etiologies). Previse will use machine learning methods and information drawn from the electronic
health record (EHR) to identify the early signs of acute kidney injury. By doing so before the clinical syndrome
of AKI is fully developed, Previse will give clinicians the time to intervene with the goals of preventing further
kidney damage, and decreasing the sequelae of AKI. Combining this prediction module with a second module
that suggests the underlying causes responsible for an incipient or full AKI, Previse will enable clinicians to
make earlier and better-informed treatment decisions for AKI patients. Research Question: Can a machine-
learning-based CDS predict the development and progression of AKI in hospitalized patients 72 hours in
advance of KDIGO stage 2 or 3, with performance providing an area under the receiver operating
characteristic curve (AUROC) of at least 0.85? Is it possible to use a Bayesian model to infer the cause of AKI
with high accuracy (AUROC ≥ 0.75)? Prior work: We have developed a prototype version of the Previse
system which predicts AKI up to 72 hours in advance of KDIGO stage 2 or 3 criteria, with an AUROC near
0.70. We have previously developed machine-learning-based predictive tools for sepsis, in-hospital mortality,
and other adverse patient events with performance significantly improved over commonly used rules-based
scoring systems. Specific Aims: To predict the onset of chart-abstracted KDIGO stage 2 or 3 AKI in
retrospective data, 72 hours in advance (Aim 1); to use data drawn from the EHR to identify the cause of AKI
at time of onset with high accuracy, and to present this causal inference, its likelihood, and relevant evidence
supporting it in a human-interpretable fashion (Aim 2). Methods: We will predict the onset of AKI using a
deep, recurrent neural network (RNN). This expressive, nonlinear classifier will incorporate time-series
information in the qualitative portions of the EHR and will also incorporate features derived from text
components, such as radiology reports. Labeling AUROC of 0.85 or higher at 72 hours pre-KDIGO AKI will
constitute success in Aim 1. In Aim 2, we will train a dynamic Bayesian network to identify the cause of AKI.
We will train this system using semi-supervised methods, where the causes of a set of AKI examples will be
hand-annotated by clinician experts; these examples will be split into two groups, with some used for training
and the remainder for testing. Aim 2 will be successful if this training results in etiology identification accuracy
of at least 0.75 in the test set. Future Directions: Following the proposed work, the combined Previse system
will be deployed for prospective studies at partner hospitals.
抽象的
意义:在这个 SBIR 项目中,我们建议开发 Previse,一种新颖的、基于软件的临床决策
用于预测急性肾损伤 (AKI) 的支持 (CDS) 系统,并将 AKI 归因于几个原因之一
Previse 将使用机器学习方法和从电子数据中获取的信息。
健康记录(EHR)可在临床综合征出现之前识别急性肾损伤的早期迹象。
AKI 已完全发展,Previse 将为指挥官提供干预时间,以防止进一步发生
肾脏损伤,并减少 AKI 的后遗症。将此预测模块与第二个模块相结合。
表明导致早期或完全 AKI 的根本原因,Previse 将能够优于
为 AKI 患者做出更早、更明智的治疗决策 研究问题:机器可以吗?
基于学习的 CDS 在 72 小时内预测住院患者 AKI 的发生和进展
KDIGO 第 2 或第 3 阶段的进步,其性能提供了接收器操作下的区域
特征曲线 (AUROC) 至少为 0.85 是否可以使用贝叶斯模型来推断 AKI 的原因?
具有高精度(AUROC ≥ 0.75)? 之前的工作:我们开发了 Previse 的原型版本
系统可提前 72 小时预测 AKI,达到 KDIGO 2 或 3 阶段标准,AUROC 接近
0.70。我们之前开发了基于机器学习的脓毒症、院内死亡率、
和其他不良患者事件,与常用的基于规则的方法相比,性能显着提高
具体目标:预测图表抽象 KDIGO 2 期或 3 期 AKI 的发作。
提前 72 小时进行回顾性数据(目标 1),使用从 EHR 中提取的数据来确定 AKI 的原因
在发病时以高精度提供该因果推论、其可能性和相关证据
以人类可解释的方式支持它(目标 2):我们将使用预测 AKI 的发作。
这种富有表现力的非线性分类器将包含时间序列。
EHR 定性部分中的信息,还将包含源自文本的特征
组件,例如在 KDIGO AKI 前 72 小时标记 AUROC 为 0.85 或更高。
构成目标 1 的成功。在目标 2 中,我们将训练动态贝叶斯网络来识别 AKI 的原因。
我们将使用半监督方法训练该系统,其中一组 AKI 示例的原因将是
由临床专家手工注释;这些示例将分为两组,其中一些用于培训
如果此训练能够实现病因识别的准确性,则其余的目标 2 将成功。
测试集中至少为 0.75 未来方向:根据提议的工作,组合 Previse 系统。
将被部署在合作医院进行前瞻性研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ritankar Das其他文献
Ritankar Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ritankar Das', 18)}}的其他基金
A computational approach to early sepsis detection
早期脓毒症检测的计算方法
- 批准号:
9557664 - 财政年份:2018
- 资助金额:
$ 34.93万 - 项目类别:
Autonomous system supporting patient-specific transfer and discharge decisions
支持患者特定转移和出院决策的自主系统
- 批准号:
9256278 - 财政年份:2017
- 资助金额:
$ 34.93万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
lmmunomodulatory roles of renal lymphatic endothelial cells in Acute Kidney Injury
肾淋巴内皮细胞在急性肾损伤中的免疫调节作用
- 批准号:
10612171 - 财政年份:2023
- 资助金额:
$ 34.93万 - 项目类别:
Developing a Precision Medicine Approach to Pediatric Sepsis-Associated Acute Kidney Injury: Identification of Unique Subphenotypes and Strategies for Bedside Implementation
开发针对小儿脓毒症相关急性肾损伤的精准医学方法:识别独特的亚表型和临床实施策略
- 批准号:
10721391 - 财政年份:2023
- 资助金额:
$ 34.93万 - 项目类别:
The Paired Undergraduate Mentoring Program (PUMP) in Uronephrology
泌尿肾病学本科生配对辅导计划 (PUMP)
- 批准号:
10705557 - 财政年份:2022
- 资助金额:
$ 34.93万 - 项目类别:
The Paired Undergraduate Mentoring Program (PUMP) in Uronephrology
泌尿肾病学本科生配对辅导计划 (PUMP)
- 批准号:
10332057 - 财政年份:2022
- 资助金额:
$ 34.93万 - 项目类别:
PRN Blood Pressure Medication Use in VA Hospitals: A Mixed Methods Approach
PRN 退伍军人医院血压药物的使用:混合方法
- 批准号:
10424766 - 财政年份:2022
- 资助金额:
$ 34.93万 - 项目类别: