Dynamics of membrane proteins unraveled by time-resolved serial crystallography
时间分辨系列晶体学揭示膜蛋白的动力学
基本信息
- 批准号:9887557
- 负责人:
- 金额:$ 39.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-30 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adrenergic AgentsAgonistAreaArrestinsBindingBiologicalBiologyCell physiologyCellsCellular Metabolic ProcessCodeComplexComputer SimulationCryoelectron MicroscopyCrystallizationCrystallographyDataDevelopmentDevicesDiseaseDrug TargetingElectronsEnergy SupplyEnzymesEvaluationFundingG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGenesGrantGrowthHealthHumanHydration statusImageJournalsKnowledgeLasersLeadLegal patentLigand BindingLigandsLightLipidsMediatingMedicineMembraneMembrane ProteinsMethodsMicrofluidicsMitochondriaModelingMolecularMolecular ConformationMonitorMotionOxidasesOxidation-ReductionOxygenPaste substancePharmaceutical PreparationsPhasePhysiologic pulsePhysiologicalPlayPoriferaProcessProtein DynamicsProteinsProteomeProton PumpProtonsPublicationsRadiation induced damageReactionRegulationRespirationRhodopsinRoentgen RaysRoleSamplingSideSignal TransductionSpectrum AnalysisStreamStructural BiologistStructureTechniquesTechnologyTemperatureTimeTooth structureWaterWorkX ray diffraction analysisX-Ray Crystallographybasebeta-adrenergic receptorcytochrome c oxidasedesignfree-electron laserinsightmacromoleculemethod developmentmolecular dynamicsmovienanonanocrystalnovelprotein complexsuccesstool
项目摘要
ABSTRACT
Membrane proteins are of extreme importance for human health and 30% of the human proteome consist of
membrane proteins, which are key players in important cellular processes controlling and mediating the
interaction between cells, regulate transport in and out of the cells and are also the major players in bioenergy
conversion including respiration; 40% of all current drugs being targeted to membrane proteins. However
knowledge of their structure and function at the atomic level is sparse, as the structures for less 800 unique
membrane proteins has been determined to date. Furthermore, most of these structures show only a static
picture of the membrane protein, while their function in the cell is highly dynamic. This proposal aims to
develop novel methods to determine “molecular movies” of membrane proteins “at work,” and specifically, to
determine the dynamics of the catalytic cycle of the cytochrome oxidase and to study the conformational
dynamics of the beta-adrenergic G-protein coupled receptor. The proposal aims to develop and use a
combination of methods that focus on time-resolved femtosecond (fs) X-ray crystallography with XFELs. Fs
crystallography, pioneered by our team in the previous funding cycles, has revolutionized X-ray
crystallography. It overcomes radiation damage, enabling structure analysis of biological macromolecules at
room temperature under physiological conditions based on the new serial approach for structure determination,
where tens of thousands of X-ray diffraction snapshots are collected from a stream of fully hydrated
nano/microcrystals of proteins, interacting with fs X-ray pulses from a Free Electron Laser. New developments
in nanocrystal growth and characterization, together with development of new injector technology and data
evaluation methods, have progressed the new method of SFX at a very fast pace based on results from this
project, which has led to 70 publications, 29 of them in high impact journals as well as patents (accepted and
provisional applications filed). This R01 Renewal is based on the success of the previous work but explores
new areas by shifting the major focus from the proof-of-concept to their improvement and applicationtowards
molecular movies of the functional dynamics of two important membrane proteins: cytochrome c oxidase and
the beta-adrenergic receptor. In Aim 1 we will study the dynamics of the catalytic cycle of cytochrome c
oxidase, a large-multi-protein membrane protein complex and the key enzyme in respiration, catalyzing the 4
electron 4 proton reduction of oxygen to 2 water molecules, whose detailed mechanisms is still a hot topic of
debate. Aim 2 is focused on the dynamics of the beta-adrenergic receptor and its complexes with arrestin and
G-protein. In this Aim, we will combine new SFX method developments (including making the GPCR triggered
by light to allow for very fast dynamics to be detected) with the time resolved cryo-EM studies of the GPCR
complexes that will allow us to unravel motions on a time scale of seconds.
抽象的
膜蛋白对人类健康极其重要,人类蛋白质组的 30% 由
膜蛋白,在控制和介导细胞的重要细胞过程中发挥着关键作用
细胞之间的相互作用,调节细胞进出细胞的运输,也是生物能源的主要参与者
包括呼吸作用在内的转化;目前所有药物中有 40% 是针对膜蛋白的。
对它们在原子水平上的结构和功能的了解很少,因为只有不到 800 个独特的结构
此外,迄今为止,大多数膜蛋白仅表现出静态。
膜蛋白的图片,而它们在细胞中的功能是高度动态的。
开发新方法来确定膜蛋白“工作”的“分子电影”,特别是
确定细胞色素氧化酶催化循环的动力学并研究构象
该提案旨在开发和使用 β-肾上腺素能 G 蛋白偶联受体的动力学。
专注于时间分辨飞秒 (fs) X 射线晶体学与 XFEL 的方法组合。
我们的团队在之前的融资周期中首创的晶体学彻底改变了 X 射线
它克服了辐射损伤,使得生物大分子的结构分析成为可能。
基于新的串行结构测定方法的生理条件下的室温,
从完全水合的水流中收集了数以万计的 X 射线衍射快照
蛋白质的纳米/微晶体,与自由电子激光器的飞秒 X 射线脉冲相互作用。
纳米晶体生长和表征,以及新注射器技术和数据的开发
评估方法,基于此结果以非常快的速度开发了SFX的新方法
该项目已发表 70 篇出版物,其中 29 篇发表于高影响力期刊以及专利(已接受和
该 R01 更新基于先前工作的成功,但进行了探索。
通过将主要重点从概念验证转移到改进和应用来开拓新领域——
两种重要膜蛋白功能动力学的分子电影:细胞色素c氧化酶和
在目标 1 中,我们将研究细胞色素 c 催化循环的动力学。
氧化酶是一种大型多蛋白膜蛋白复合物,也是呼吸作用的关键酶,催化 4
电子4质子将氧还原成2个水分子,其详细机制仍然是研究的热点
辩论的目标 2 集中于 β-肾上腺素受体及其与抑制蛋白和复合物的动力学。
在这个目标中,我们将结合新的 SFX 方法开发(包括触发 GPCR)。
通过光来检测非常快的动态)以及 GPCR 的时间分辨冷冻电镜研究
复合体将使我们能够在秒的时间尺度上解开运动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETRA FROMME其他文献
PETRA FROMME的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETRA FROMME', 18)}}的其他基金
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
8300877 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
8518386 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
9055725 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
9304242 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
8501551 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
7982262 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
8329489 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
8741167 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Femtosecond nano-crystallography of membrane proteins
膜蛋白的飞秒纳米晶体学
- 批准号:
8818297 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
Center for Membrane Proteins in Infectious Diseases (MPID)
传染病膜蛋白中心 (MPID)
- 批准号:
8692880 - 财政年份:2010
- 资助金额:
$ 39.59万 - 项目类别:
相似国自然基金
α7nAChR激动剂通过PGC-1α和HO-1调控肾小管上皮细胞线粒体的质和量进而改善脓毒症急性肾损伤的机制研究
- 批准号:82372172
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于纳米铝乳剂和模式识别受体激动剂的复合型佐剂研究
- 批准号:82341043
- 批准年份:2023
- 资助金额:110 万元
- 项目类别:专项基金项目
新型IL2Rβγ激动剂逐级控释联合放疗对抗三阴性乳腺癌的作用及机制研究
- 批准号:82303819
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡瓦胡椒中选择性大麻素2型受体激动剂的发现及其抗骨质疏松作用研究
- 批准号:82360684
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
脂质纳米粒体内介导嵌合抗原受体-M1型巨噬细胞协同TLR激动剂治疗实体瘤的研究
- 批准号:82304418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational Design from Cryo-EM Structures of High-Affinity Ryanodine Receptor Ligands Based on Natural Peptides
基于天然肽的高亲和力兰尼定受体配体的冷冻电镜结构的合理设计
- 批准号:
10729564 - 财政年份:2023
- 资助金额:
$ 39.59万 - 项目类别:
The role of the endothelial NPYR1-TRPC3-ET1 signaling axis in neurovascular coupling dysfunction
内皮NPYR1-TRPC3-ET1信号轴在神经血管耦合功能障碍中的作用
- 批准号:
10667097 - 财政年份:2023
- 资助金额:
$ 39.59万 - 项目类别:
Neurobehavioral mechanisms underlying xylazine and fentanyl co-use and withdrawal
赛拉嗪和芬太尼共同使用和戒断的神经行为机制
- 批准号:
10737712 - 财政年份:2023
- 资助金额:
$ 39.59万 - 项目类别:
Alpha2 adrenergic receptors as a target for alcohol addiction
α2 肾上腺素能受体作为酒精成瘾的靶点
- 批准号:
10557791 - 财政年份:2022
- 资助金额:
$ 39.59万 - 项目类别:
Spatiotemporal Dynamics of Noradrenergic Signaling in the Neocortex
新皮质去甲肾上腺素能信号传导的时空动态
- 批准号:
10537371 - 财政年份:2022
- 资助金额:
$ 39.59万 - 项目类别: