Bioinformatics Technology to Characterize Tumor Infiltrating Immune Repertoires
生物信息学技术表征肿瘤浸润免疫库
基本信息
- 批准号:9888343
- 负责人:
- 金额:$ 42.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-06 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAntibodiesAntigensB cell repertoireB-LymphocytesBioinformaticsBiologicalCancer VaccinesCell MaturationCell SeparationClinicCollaborationsCollectionComplementarity Determining RegionsComputational algorithmConsumptionDataData SetEducation and OutreachGene ExpressionGenomic Data CommonsImmuneImmune systemImmunityImmunoglobulin Class SwitchingImmunoglobulin Somatic HypermutationImmunoglobulin Variable RegionImmunologistImmunotherapyInfiltrationInformaticsInformation TechnologyMainstreamingMalignant NeoplasmsMediatingMediationMethodsNational Cancer InstituteOncologistPatientsPropertyPublic DomainsRNA analysisReceptor CellReceptors, Antigen, B-CellResourcesSamplingSolid NeoplasmSourceStatistical MethodsT cell therapyT-Cell ReceptorT-LymphocyteT-cell receptor repertoireTechnologyThe Cancer Genome AtlasTherapeuticTimeTissuesTumor ImmunityTumor TissueTumor stageTumor-Infiltrating LymphocytesTumor-infiltrating immune cellsV(D)J Recombinationalgorithm developmentanticancer researchbioinformatics infrastructurebioinformatics resourcebioinformatics toolcancer cellcancer immunotherapycancer therapycancer typeclinical practicecohortcomputing resourcesdata miningdeep sequencinggenomic dataheuristicsimmunoglobulin receptorimmunological diversityimprovedimproved functioninginsightmRNA sequencingneoplasm resourcenovelonline resourceoutreachsimulationsoundtranscriptome sequencingtumortumor immunologytumor microenvironmentuser-friendlyweb interface
项目摘要
PROJECT SUMMARY
The repertoires of tumor-infiltrating T cells and B cells are rich sources of information about cancer-immune
interactions and provide insights on cancer immunotherapy targets. Efforts have been made to characterize B/T
cell repertoires in solid tumors using cell sorting followed by targeted deep sequencing. However, these
approaches may produce biased estimates during tissue disaggregation and can be expensive when applied to
large sample cohorts. Massively parallel mRNA sequencing (RNA-seq) technology has become the mainstream
method to profile gene expression and thousands of solid tumor RNA-seq profiles are available in the public
domain. The rich collection of tumor RNA-seq datasets provides an alternative approach to study tumor-infiltrating
B/T cell repertoires in solid tumors. Our team has recently developed a statistical method TIMER for deconvolving
different immune components in the tumor microenvironment, and TRUST for inferring the hypervariable
complementarity determining regions (CDRs) of the tumor infiltrating T cell receptor (TCR) repertoire from bulk
tumor RNA-seq data in the public domain.
Our preliminary analysis indicated that there are approximately ten times as many B cell receptor (BCR) reads
and TCR reads, suggesting that extracting the BCR repertoires from bulk tumor RNA-seq could reveal important
insights on B cell mediated tumor immunity. The aims of this proposal are: to extend our TRUST algorithm to
extract B cell receptor (BCR) repertoires from tumor RNA-seq data, and identify somatic hypermutations and
immunoglobin class switches (Aim 1); to systematically analyze TCR and BCR repertoires from large scale tumor
RNA-seq cohorts, and develop a user friendly web interface to allow cancer immunologists or immuno-oncologists
to investigate tumor-immune associations (Aim 2); to promote the utility of our tumor immune resource through
collaborations, cloud sharing, and outreach (Aim 3).
We will deliver a robust bioinformatics algorithm to systematically identify BCR / TCR repertoires from bulk tumor
RNA-seq data and a user-friendly resource for cancer immunologists or immuno-oncologists to explore tumor-
immune interactions from large tumor profiling cohorts in the public as well as their unpublished data. The
successful execution of this proposal has the potential to inform clinical practice of cancer immunotherapies,
including adoptive T cell transfer, therapeutic cancer vaccines or antibodies. Our proposed cancer immunology
algorithm and resource will be a unique addition to the array of bioinformatics tools developed by the Information
Technology for Cancer Research at the National Cancer Institute.
项目概要
肿瘤浸润 T 细胞和 B 细胞的库是有关癌症免疫的丰富信息来源
相互作用并提供有关癌症免疫治疗靶点的见解。努力刻画B/T特征
使用细胞分选和靶向深度测序来分析实体瘤中的细胞库。然而,这些
方法可能会在组织分解过程中产生有偏差的估计,并且当应用于
大样本队列。大规模并行mRNA测序(RNA-seq)技术已成为主流
基因表达谱分析方法和数以千计的实体瘤 RNA-seq 谱已向公众开放
领域。丰富的肿瘤 RNA-seq 数据集为研究肿瘤浸润提供了另一种方法
实体瘤中的 B/T 细胞库。我们团队最近开发了一种用于反卷积的统计方法TIMER
肿瘤微环境中的不同免疫成分,以及推断高变量的信任
肿瘤浸润 T 细胞受体 (TCR) 库的互补决定区 (CDR)
公共领域的肿瘤 RNA-seq 数据。
我们的初步分析表明,B 细胞受体 (BCR) 读取数量大约是其十倍
和 TCR 读数,表明从大块肿瘤 RNA-seq 中提取 BCR 库可以揭示重要的信息
对 B 细胞介导的肿瘤免疫的见解。该提案的目的是:将我们的 TRUST 算法扩展到
从肿瘤 RNA-seq 数据中提取 B 细胞受体 (BCR) 库,并识别体细胞超突变和
免疫球蛋白类别转换(目标 1);系统分析大规模肿瘤的 TCR 和 BCR 库
RNA-seq 队列,并开发一个用户友好的网络界面,以允许癌症免疫学家或免疫肿瘤学家
研究肿瘤-免疫关联(目标 2);促进我们的肿瘤免疫资源的利用
协作、云共享和外展(目标 3)。
我们将提供强大的生物信息学算法,系统地从大块肿瘤中识别 BCR / TCR 库
RNA-seq 数据和用户友好的资源,供癌症免疫学家或免疫肿瘤学家探索肿瘤
来自公众大型肿瘤分析群体的免疫相互作用以及他们未发表的数据。这
该提案的成功执行有可能为癌症免疫疗法的临床实践提供信息,
包括过继性 T 细胞移植、治疗性癌症疫苗或抗体。我们提出的癌症免疫学
算法和资源将成为信息中心开发的一系列生物信息学工具的独特补充。
国家癌症研究所的癌症研究技术。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Landscape of B cell immunity and related immune evasion in human cancers.
人类癌症中 B 细胞免疫和相关免疫逃避的概况。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:30.8
- 作者:Hu, Xihao;Zhang, Jian;Wang, Jin;Fu, Jingxin;Li, Taiwen;Zheng, Xiaoqi;Wang, Binbin;Gu, Shengqing;Jiang, Peng;Fan, Jingyu;Ying, Xiaomin;Zhang, Jing;Carroll, Michael C;Wucherpfennig, Kai W;Hacohen, Nir;Zhang, Fan;Zhang, Peng;Liu, Jun S;Li
- 通讯作者:Li
Immune receptor repertoires in pediatric and adult acute myeloid leukemia.
儿童和成人急性髓系白血病的免疫受体库。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:12.3
- 作者:Zhang, Jian;Hu, Xihao;Wang, Jin;Sahu, Avinash Das;Cohen, David;Song, Li;Ouyang, Zhangyi;Fan, Jingyu;Wang, Binbin;Fu, Jingxin;Gu, Shengqing;Sade;Hacohen, Nir;Li, Wuju;Ying, Xiaomin;Li, Bo;Liu, X Shirley
- 通讯作者:Liu, X Shirley
Evaluation of immune repertoire inference methods from RNA-seq data.
根据 RNA-seq 数据评估免疫组库推断方法。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:46.9
- 作者:Hu, Xihao;Zhang, Jian;Liu, Jun S;Li, Bo;Liu, Xiaole Shirley
- 通讯作者:Liu, Xiaole Shirley
TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data.
TRUST4:根据大量和单细胞 RNA-seq 数据重建免疫库。
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:48
- 作者:Song, Li;Cohen, David;Ouyang, Zhangyi;Cao, Yang;Hu, Xihao;Liu, X Shirley
- 通讯作者:Liu, X Shirley
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heng Li其他文献
Heng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heng Li', 18)}}的其他基金
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10777673 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10112282 - 财政年份:2020
- 资助金额:
$ 42.36万 - 项目类别:
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
10379369 - 财政年份:2020
- 资助金额:
$ 42.36万 - 项目类别:
The construction and utility of reference pan-genome graphs
参考泛基因组图的构建和利用
- 批准号:
9904877 - 财政年份:2020
- 资助金额:
$ 42.36万 - 项目类别:
Advanced computational methods in analyzing high-throughput sequencing data
分析高通量测序数据的先进计算方法
- 批准号:
10367263 - 财政年份:2018
- 资助金额:
$ 42.36万 - 项目类别:
Advanced computational methods in analyzing high-throughput sequencing data
分析高通量测序数据的先进计算方法
- 批准号:
10559560 - 财政年份:2018
- 资助金额:
$ 42.36万 - 项目类别:
相似国自然基金
基于抗原抗体相互作用的抗体定向虚拟设计与筛选
- 批准号:32370697
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原位疫苗新策略:抗体偶联仿生ROS纳米酶增强巨噬细胞吞噬及抗原交叉呈递效应
- 批准号:32371454
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CD40-CD154共刺激信号介导的TD/TI抗原诱导罗非鱼抗体分泌细胞形成机制的比较研究
- 批准号:32303044
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向CLDN18.2抗体的抗原结合特性对CAR-T抗肿瘤活性的调控机制
- 批准号:82303716
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗变构/单体形式的C反应蛋白关键抗原表位199-206抗体在狼疮性肾炎小管间质病变中的作用机制及其靶向治疗研究
- 批准号:82300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Sex-differences in HIV persistence and Immune Dynamics during Reproductive Aging
生殖衰老过程中艾滋病毒持久性和免疫动态的性别差异
- 批准号:
10838316 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Implementation of Eplet Mismatch Analysis in Pediatric Kidney Transplantation
Eplet 错配分析在小儿肾移植中的实施
- 批准号:
10739126 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别:
Computational Methods for Analyzing lmmunoglobulin Allelic Diversity in B cells
分析 B 细胞中免疫球蛋白等位基因多样性的计算方法
- 批准号:
10751541 - 财政年份:2023
- 资助金额:
$ 42.36万 - 项目类别: