Exploring the Therapeutic Potential of BRD4 Extra-terminal Domain Inhibition in Cardiac Dysfunction and Remodeling. Fellow: Joshua Travers
探索 BRD4 末端结构域抑制对心脏功能障碍和重构的治疗潜力。
基本信息
- 批准号:9758647
- 负责人:
- 金额:$ 6.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-10 至 2021-04-09
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAttenuatedBromodomainCardiacCardiac developmentCardiovascular DiseasesCardiovascular PathologyCardiovascular PhysiologyCardiovascular systemCause of DeathCell ProliferationChIP-seqCharacteristicsChromatinClinicalDependovirusDepositionDevelopmentDiseaseEchocardiographyEpigenetic ProcessEtiologyEvaluationExtracellular MatrixExtracellular Matrix ProteinsFibroblastsFibrosisFoundationsFunctional disorderGene ExpressionGene Expression AlterationGene Expression ProfilingGenesGenetic TranscriptionHeart failureHistologyHistonesHumanHypertrophyInvestigationLaboratoriesLysineMass Spectrum AnalysisMediatingMentorshipModelingMolecularMusMyocardialMyocardial dysfunctionMyocardiumMyofibroblastOutcomePathogenesisPathologicPeptidesPrimary Cell CulturesPropertyProteinsProteomicsReaderRegulator GenesResearch PersonnelRodent ModelRoleScientistSignal TransductionSolidSurgical ModelsTestingTherapeuticTherapeutic InterventionTissuesTrainingTranscription ElongationTreatment EfficacyVentricularVentricular RemodelingWorkcardioprotectionclinically relevantconstrictionhemodynamicsinhibitor/antagonistinnovationinsightinterstitialmouse modelnovelnovel therapeuticsoutcome forecastpressureprogramsprotective effectresponseskillssmall molecule inhibitortranscriptometranscriptome sequencingtreatment strategy
项目摘要
Project Summary
Heart failure (HF), the final clinical manifestation of numerous cardiovascular pathologies, is a
devastating disease with poor prognosis. Nearly all etiologies of cardiovascular disease involve
pathological myocardial remodeling, characterized by excessive deposition of extracellular matrix
proteins by activated cardiac myofibroblasts, which reduces tissue compliance and accelerates HF
progression. Acetylation of nucleosomal lysine residues within chromatin represents an important
epigenetic regulatory mechanism of gene transcription that is critical to HF pathogenesis. In
particular, the acetyl-lysine reader protein BRD4 has been recognized for its significant contributions
to the transcription of pro-fibrotic gene programs, along with the development of cardiac dysfunction
and remodeling. Functional studies of BRD4 indicate that the extra-terminal (ET) domain mediates
transcriptional elongation of pro-fibrotic gene programs via interactions with co-factor proteins;
however, the potential for BRD4 ET domain inhibition in the treatment of cardiovascular disease has
yet to be elucidated. Utilizing innovative peptide inhibitors, the proposed studies will investigate the
therapeutic potential of BRD4 ET domain inhibition in primary cardiac fibroblasts and a murine model
of HF. The first aim will test the hypothesis that inhibition of the ET domain of BRD4 will alleviate
characteristics of pathological myofibroblast activation in primary mouse and human cardiac
fibroblasts, and chromatin immunoprecipitation sequencing will provide mechanistic insight into the
potential therapeutic properties of this inhibition. The second aim will evaluate the cardioprotective
properties of these novel BRD4 ET domain inhibitors in a clinically relevant pressure-overload model
of HF. Potential salutary properties on cardiac dysfunction will be assessed, along with the evaluation
of hypertrophy and fibrotic remodeling by histology and proteomic analysis of the extracellular matrix.
Finally, RNA-sequencing will be utilized to determine global gene expression alterations in the
myocardium in response to BRD4 ET domain inhibition. Importantly, the proposed work will
significantly enhance the applicant's skill sets in primary cell culture, cardiovascular physiology,
rodent models of HF, and the investigation of epigenetic mechanisms regulating gene transcription.
Together with the mentorship of a renowned expert in cardiovascular epigenetics committed to the
development of young scientists, this training will provide a solid foundation for the applicant's
development into an independent investigator. Moreover, this innovative approach offers the exciting
potential for the development of direly needed novel therapeutic strategies for the treatment of HF.
项目概要
心力衰竭(HF)是多种心血管疾病的最终临床表现,是一种
预后不良的毁灭性疾病。几乎所有心血管疾病的病因都涉及
病理性心肌重塑,其特征是细胞外基质过度沉积
激活的心肌成纤维细胞产生的蛋白质,会降低组织顺应性并加速心力衰竭
进展。染色质内核小体赖氨酸残基的乙酰化代表了一个重要的
基因转录的表观遗传调控机制对心力衰竭发病机制至关重要。在
特别是,乙酰赖氨酸阅读器蛋白 BRD4 因其重大贡献而受到认可
促纤维化基因程序的转录以及心脏功能障碍的发展
和改造。 BRD4 的功能研究表明,末端外 (ET) 结构域介导
通过与辅因子蛋白相互作用实现促纤维化基因程序的转录延伸;
然而,BRD4 ET 结构域抑制在治疗心血管疾病中的潜力
尚待阐明。利用创新的肽抑制剂,拟议的研究将调查
BRD4 ET 结构域抑制对原代心脏成纤维细胞和小鼠模型的治疗潜力
高频。第一个目标将测试以下假设:抑制 BRD4 的 ET 结构域将缓解
原代小鼠和人心脏病理性肌成纤维细胞活化的特征
成纤维细胞和染色质免疫沉淀测序将提供对成纤维细胞和染色质免疫沉淀测序的机制洞察
这种抑制的潜在治疗特性。第二个目标将评估心脏保护作用
这些新型 BRD4 ET 结构域抑制剂在临床相关压力过载模型中的特性
高频。将评估对心脏功能障碍的潜在有益特性以及评估
通过细胞外基质的组织学和蛋白质组学分析来研究肥大和纤维化重塑。
最后,RNA测序将用于确定基因组中的全局基因表达变化。
心肌对 BRD4 ET 结构域抑制的反应。重要的是,拟议的工作将
显着提高申请人在原代细胞培养、心血管生理学、
心力衰竭的啮齿动物模型,以及调节基因转录的表观遗传机制的研究。
在心血管表观遗传学领域著名专家的指导下,致力于
青年科学家的发展,本次培训将为申请者的未来发展打下坚实的基础。
发展成为一名独立调查员。此外,这种创新方法还提供了令人兴奋的
开发急需的治疗心力衰竭的新型治疗策略的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Travers其他文献
Joshua Travers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Travers', 18)}}的其他基金
Elucidating the Molecular Mechanisms and Cellular Specificity of HDAC Inhibitor Efficacy in Diastolic Dysfunction
阐明 HDAC 抑制剂治疗舒张功能障碍的分子机制和细胞特异性
- 批准号:
10664222 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
相似国自然基金
受HPV E6/E7调控的新lncRNA CRL通过减弱铁死亡抑制宫颈上皮内瘤变进展的机制研究
- 批准号:82301838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向糖皮质激素膜受体GPR97减弱糖皮质激素副作用的药物发现、结构基础及机制研究
- 批准号:32301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新冠病毒变异株毒力减弱的分子机制及规律研究
- 批准号:82372223
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
II型螺旋神经元P2X3受体在长期低强度噪声暴露致耳蜗去掩蔽效应减弱中的作用机制研究
- 批准号:82301306
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
绵羊甘露聚糖结合凝集素(MBL)在MO人工感染中致病性减弱的作用机制研究
- 批准号:32360812
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Domain- and protein-selective BET mechanisms in cocaine-seeking behaviors
可卡因寻求行为中的结构域和蛋白质选择性 BET 机制
- 批准号:
10714343 - 财政年份:2023
- 资助金额:
$ 6.12万 - 项目类别:
Targeting dysregulated transcriptome as therapy for post-myeloproliferative neoplasm (MPN) sAML
靶向转录组失调作为骨髓增殖后肿瘤 (MPN) sAML 的治疗方法
- 批准号:
10595080 - 财政年份:2020
- 资助金额:
$ 6.12万 - 项目类别:
Neuronal subtype and circuit-specific epigenetic mechanisms in addiction
成瘾中的神经元亚型和回路特异性表观遗传机制
- 批准号:
9764314 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别:
UAB Research Center of Excellence in Arsenicals
阿拉巴马大学砷化合物卓越研究中心
- 批准号:
9767149 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别:
UAB Research Center of Excellence in Arsenicals
阿拉巴马大学砷化合物卓越研究中心
- 批准号:
10249107 - 财政年份:2018
- 资助金额:
$ 6.12万 - 项目类别: