Enhancing the Effectiveness of Immunotherapies by T Cell Epigenetic Reprogramming
通过 T 细胞表观遗传重编程增强免疫疗法的有效性
基本信息
- 批准号:10737264
- 负责人:
- 金额:$ 64.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-05 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptive TransferAgonistBackBiological ModelsBreast AdenocarcinomaCD8-Positive T-LymphocytesCRISPR/Cas technologyCTLA4 geneCancer PatientCell physiologyCellsChromatinChronicClinicalDNA MethylationDNMT3aDataEffectivenessEndowmentEnzymesEpigenetic ProcessEquilibriumFailureFunctional disorderGenesGenetic TranscriptionGliomaGoalsGrantHumanImmune responseImmunotherapyIn VitroInfectionKnowledgeLinkLymphocytic choriomeningitis virusMalignant NeoplasmsMediatingMemoryMethodsModelingMolecular TargetMorbidity - disease rateMusNaturePathway interactionsPatientsPre-Clinical ModelRefractoryRejuvenationReportingResistanceRoleRouteSignal PathwaySignal TransductionSpecificitySystemT cell differentiationT-LymphocyteTechnologyTestingTherapeuticTransforming Growth Factor betaTransgenic OrganismsTranslatingViralViral CancerVirusVirus Diseasesantagonistchromatin remodelingchronic infectioncytotoxiccytotoxic CD8 T cellsepigenomeexhaustexhaustionexperimental studyfunctional restorationimmune checkpoint blockadein vitro Modelin vivoin vivo Modelinsightmelanomamortalitynovelnovel strategiespreventprogenitorprogrammed cell death protein 1programsreceptorrefractory cancerresponserestraintretroviral transductionstemstemnesssuccesssynergismtooltranscriptometumor
项目摘要
PROJECT SUMMARY
Cancer and chronic virus infections are significant causes of morbidity and mortality. While cytotoxic CD8 T
cells are the main killers of tumors or virus-infected cells, persistent stimulation of CD8 T cells during chronic
infections or cancer results in a gradual loss of their cytotoxic function as T cells progress towards a fully-
exhausted state. While immune checkpoint blockade (ICB) therapy allows partially-exhausted CD8 T cells to
functionally recover by blocking inhibitory signals, terminally-exhausted T cells remain nonresponsive to this
therapy. The inability of terminally-exhausted T cells to recover after ICB may explain why many cancer patients
fail to mount durable responses to ICB. We recently showed that de novo DNA methylation programming is
causally linked to the progression of T cells toward terminal exhaustion and poor response to ICB. Importantly,
we discovered that targeting T cell-intrinsic epigenetic programs synergized the efficacy of ICB during chronic
infection or cancer. Yet, the following questions represent major gaps in our current understanding of T cell
exhaustion: (1) How are these epigenetic changes acquired in exhausted T cells? (2) What are the upstream
signals that regulate the specificity of de novo DNA methylation programs in exhausted versus functional T cells?
(3) Can we reverse the epigenetic programming in exhausted T cells to the functional state while avoiding
transformation? Bridging these gaps will allow us to identify and target factors that apply “epigenetic brakes” to
CD8 T cell function. To address these questions, we have developed a novel in-vitro model of stable human T
cell dysfunction as a tractable tool that can guide our in-vivo experiments by providing first-line mechanistic
studies. First, we will employ cutting-edge approaches, such as CRISPR-Cas9 gene editing and retroviral
transduction, to test the hypothesis that specific tumor microenvironmental signals regulate epigenetic
programming in persistently stimulated CD8 T cells, which promotes their resistance to ICB therapy. We aim to
block and/or revert the progression toward the terminally-exhausted state by targeting components of this
signaling pathway while promoting counteracting pathways. Second, we aim to rebalance specific
microenvironmental signals to restore functionality and response in terminally-exhausted T cells. Using novel in-
vitro model systems of T cell dysfunction and complementary in-vivo models of chronic viral infection and cancer,
as well as cutting-edge technologies to profile DNA methylation, open chromatin landscape, and transcriptome
in CD8 T cells, our proposed studies can determine if targeting specific factors can remodel chromatin back into
an accessible state at effector and/or stemness-associated genes, leading to functionally-rejuvenated T cells.
These proposed studies will provide insights into how epigenetic programming can be reversed during
progression to T cell exhaustion that can be translated to reprogram terminally-exhausted T cells in clinical
settings, ultimately enhancing the efficacy of T cell immunotherapies.
项目摘要
癌症和慢性病毒感染是发病率和死亡率的重要原因。而细胞毒性CD8 T
细胞是肿瘤或病毒感染细胞的主要杀手,在慢性期间持续刺激CD8 T细胞
感染或癌症导致其细胞毒性功能的年级丧失,因为T细胞朝着完全的发展
耗尽的状态。而免疫检查点阻滞(ICB)治疗允许部分竭尽全力的CD8 T细胞
在功能上通过阻止抑制信号恢复,终止尚竭尽全力的T细胞对此无反应
治疗。 ICB之后终端排定的T细胞无法恢复的能力可以解释为什么许多癌症患者
无法安装对ICB的持久响应。我们最近表明从头DNA甲基化编程是
因果关系与T细胞向终末疲劳的进展和对ICB的反应不佳。重要的是,
我们发现,针对T细胞中的表观遗传学程序的靶向使ICB的效率协同慢性
感染或癌症。但是,以下问题代表了我们当前对T细胞的理解中的主要差距
精疲力尽:(1)在耗尽的T细胞中如何获得这些表观遗传变化? (2)上游是什么
在耗尽的T细胞和功能性T细胞中调节从头DNA甲基化程序的特异性的信号?
(3)我们可以将耗尽的T细胞中的表观遗传编程逆转到避免的功能状态
转型?桥接这些差距将使我们能够识别和针对应用“表观遗传制动”的因素
CD8 T细胞功能。为了解决这些问题,我们已经开发了一种新颖的体外模型稳定的人类T
细胞功能障碍是一种可拖动工具,可以通过提供一线机械来指导我们的体内实验
研究。首先,我们将采用尖端方法,例如CRISPR-CAS9基因编辑和逆转录病毒
转导,以测试特定肿瘤微环境信号调节表观遗传的假设
持续刺激CD8 T细胞的编程,从而促进了它们对ICB治疗的耐药性。我们的目标
通过针对此的组成部分,阻止和/或恢复向终端悬而未决的状态的进展
信号通路,同时促进抵抗路径。第二,我们的目标是重新平衡
微环境信号以恢复终末饮食T细胞中的功能和响应。使用新颖
T细胞功能障碍的体外模型系统和慢性病毒感染和癌症的完整体内模型,
以及介绍DNA甲基化,开放染色质景观和转录组的尖端技术
在CD8 T细胞中,我们提出的研究可以确定靶向特定因素是否可以重塑染色质
在效应子和/或与Stem相关的基因中可访问的状态,导致功能培养的T细胞。
这些拟议的研究将提供有关如何在期间如何逆转表观遗传编程的见解
可以将T细胞耗尽的进展转化为可以翻译成临床中终末悬而未决的T细胞
设置,最终提高了T细胞免疫疗法的效率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hazem E. Ghoneim其他文献
T cell exhaustion—a memory locked behind scars
T 细胞衰竭——锁在伤疤背后的记忆
- DOI:
10.1038/s41590-021-00977-3 - 发表时间:
2021 - 期刊:
- 影响因子:30.5
- 作者:
Amira Yousif;Hazem E. Ghoneim - 通讯作者:
Hazem E. Ghoneim
A Novel Mechanism of Enhanced Susceptibility to Bacterial Pneumonia in Influenza-infected Hosts
流感感染宿主对细菌性肺炎易感性增强的新机制
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hazem E. Ghoneim - 通讯作者:
Hazem E. Ghoneim
T cell exhaustion is Reinforced by Progressive De novo DNA Methylation Programming
渐进式 DNA 从头甲基化编程强化了 T 细胞耗竭
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:4.4
- 作者:
Ben Youngblood;Hazem E. Ghoneim;Hossam A. Abdelsamed;R. Carter;J. Hale;Eunseon Ahn;Sejin Im;Rafi Ahmed - 通讯作者:
Rafi Ahmed
Superinfections Influenza Infection Facilitates Bacterial Depletion of Alveolar Macrophages during McCullers
重复感染 流感感染促进麦卡勒病期间肺泡巨噬细胞的细菌消耗
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hazem E. Ghoneim;P. Thomas - 通讯作者:
P. Thomas
Hazem E. Ghoneim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Immunoregulatory Therapeutics for Ulcerative Colitis
溃疡性结肠炎的免疫调节治疗
- 批准号:
10697464 - 财政年份:2023
- 资助金额:
$ 64.01万 - 项目类别:
Role of TLR7-mediated B cell activation in primary Sjogren’s syndrome
TLR7 介导的 B 细胞激活在原发性干燥综合征中的作用
- 批准号:
10676443 - 财政年份:2023
- 资助金额:
$ 64.01万 - 项目类别:
Role of Splenic Pro-Resolving Mediators During Exposure to Particulate Air Pollution
暴露于颗粒空气污染期间脾促分解介质的作用
- 批准号:
10658099 - 财政年份:2023
- 资助金额:
$ 64.01万 - 项目类别:
Deciphering the role of p16INK4A+ fibroblasts in lung fibrosis
解读 p16INK4A 成纤维细胞在肺纤维化中的作用
- 批准号:
10559515 - 财政年份:2022
- 资助金额:
$ 64.01万 - 项目类别:
Defining the interactions of senescent immune cells and skeletal cells
定义衰老免疫细胞和骨骼细胞的相互作用
- 批准号:
10629252 - 财政年份:2022
- 资助金额:
$ 64.01万 - 项目类别: