Ultra-High Performance Brain-dedicated PET scanner for Neurology and Neuro-oncology imaging

用于神经病学和神经肿瘤学成像的超高性能大脑专用 PET 扫描仪

基本信息

项目摘要

1 2 functions, 3 have 4 spatial resolution and sensitivity. Such specifications impact both neurologic and neuro-oncologic diseases. In 5 the former, they allow detecting, quantitating, and tracking small changes of PET signal in minute brain regions 6 such as brain nuclei that have been implicated in many neurologic diseases. In the latter, they improve the 7 accuracy of tumor target volume definition in radiotherapy and surgical resection, thus treatment outcome. 8 The only commercial brain-dedicated PET is the HRRT, a 2 decade old technology that has been discontinued. 9 Therefore, there is compelling need to develop the next generation brain-dedicated PET with ultra-high 10 specifications to improve diagnostics that can institute therapies earlier in the evolution of the disease. 11 This proposal brings together two highly collaborative teams from Weill Cornell Medicine (WCM) and the 12 Institute for Instrumentation in Molecular Imaging (i3M), with an industrial partner, Oncovision, to build an 13 ultra-high performance brain-dedicated PET, UHB-PET. UHB-PET will exhibit: (i) volumetric spatial 14 resolution of ~0.5mm3 across the gantry, that is >4x better than that of the best brain-dedicated PET being 15 developed; (j) effective sensitivity >26x that of the brain PET with the highest spatial resolution being developed. 16 Our intensive experimental and Monte Carlo simulation results prove that our goals are highly achievable, 17 which we will attain as follows: Specific 18 maximize 19 FOV 20 and 21 Quantitative machine 22 learning to accurately determine the 3D position of 511keV 's interaction within the semi-monolithic slab, infer the 23 attenuation-corrected PET without CT scans, and minimize image noise, thus reduce the administered dose), (d) 24 use a preconditioned fixed-point image reconstruction approach to suppress the noise in sub-millimeter size 25 pixels, (e) adopt motion tracking tool we previously developed to correct for inter- and intra- head motion during 26 dynamic PET imaging, and (f) adopt methods from our previous work to accurately image-derive the input function 27 for kinetic modeling. Specific Aim 3: Assessment of image noise, target lesion visibility and quantitative accuracy 28 attained by the scanner in a characteristic set of specific neurology and neuro-oncology human studies. 29 The ultimate goal is a fully operational ultra-high performance dedicated brain PET scanner with accurate 30 quantitative capabilities for diagnosing and monitoring treatment in brain diseases. . Positron Emission Tomography (PET) is a powerful quantitative tool for studying metabolic and biochemical pharmacology, and pathology in living brains. In the past 3 decades, a myriad of brain PET tracers, been developed.In parallel, PET underwent dramatic advancement in technology that enabled much higher Aim 1 : In 2.5 years we will build UHB-PET with trapezoidal-shape (to sensitivity) semi-monolithic LYSO slabs coupled to high-performance SiPM readout, 26.7cm axial and ~28cm diameter, high 200psec detector timing resolution, isotropic spatial resolution <0.8mm FWHM 0.72mm Depth-of-interaction (DOI) resolution. Specific AIM2 : In parallel with AIM1, we will develop a Image Reconstruction tool. We will (a) incorporate accurate physics modeling, (b) use
1 2个功能, 3有 4空间分辨率和灵敏度。这种规格会影响神经系统和神经肿瘤疾病。在 5前者允许在微小的大脑区域检测,定量和跟踪宠物信号的微小变化 6例如在许多神经系统疾病中暗示的大脑核。在后者中,他们改善了 7放疗和手术切除术中肿瘤靶标体积定义的准确性,从而治疗结果。 8唯一的商业脑专用宠物是HRRT,这是一项已停产的十年旧技术。 9因此,有迫切需要用超高的脑子开发下一代脑青少年宠物 10个规格,以改善可以在疾病进化的早期进行疗法的诊断。 11该提案汇集了Weill Cornell Medicine(WCM)和The的两个高度协作团队 12分子成像学院(I3M),与工业合作伙伴Oncovision一起建造一个 13个超高性能的脑服务的宠物,UHB-PET。 UHB-PET将存在:(i)体积空间 14分辨率〜0.5mm3的分辨率在整个龙门 15开发; (j)有效的灵敏度> 26x开发了空间分辨率最高的大脑宠物。 16我们密集的实验和蒙特卡洛模拟结果证明,我们的目标非常成功, 17我们将获得如下:具体 18最大 19 FOV 20和 21定量机器 22学习准确确定半岩石板中511kev相互作用的3D位置,推断 23无CT扫描的衰减校正PET,并最大程度地减少图像噪声,从而减少施用的剂量),(d) 24使用预处理的定点图像重建方法来抑制亚毫米尺寸的噪声 25像素,(e)采用我们先前开发的运动跟踪工具,以纠正在头部和内运动期间的运动 26动态宠物成像,(f)采用我们先前工作中的方法来准确图像衍生功能 27用于动力学建模。特定目标3:评估图像噪声,目标病变可见性和定量准确性 28扫描仪附在一组特定的神经病学和神经肿瘤学人类研究中。 29最终目标是完全运行的超高性能专用脑PET扫描仪 30个用于诊断和监测脑疾病治疗的定量功能。 正电子发射断层扫描(PET)是研究代谢和生化的强大定量工具 活脑中的药理学和病理学。在过去的三十年中,无数的脑宠物示踪剂, 在同时开发了。宠物在技术方面经历了巨大的进步,这使得更高 目标1:在2。5年内,我们将用梯形形状建造UHB-PET( 灵敏度)半金石石器时代的溶血板,耦合到高性能SIPM读数,26.7厘米轴向 直径〜28厘米,高200psec检测器的时间分辨率,各向同性空间分辨率<0.8mm FWHM 0.72mm的交流深度(DOI)分辨率。特定AIM2:与AIM1并行,我们将开发一个 图像重建工具。我们将(a)合并准确的物理建模,(b)使用

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antonio Gonzalez Martinez其他文献

Antonio Gonzalez Martinez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
  • 批准号:
    51779168
  • 批准年份:
    2017
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
采用数值计算求解一类半代数系统全部整数解
  • 批准号:
    11671377
  • 批准年份:
    2016
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
采用pinball loss的MEE算法研究
  • 批准号:
    11401247
  • 批准年份:
    2014
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
  • 批准号:
    41301419
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
采用ε近似算法的盲信道均衡
  • 批准号:
    60172058
  • 批准年份:
    2001
  • 资助金额:
    16.0 万元
  • 项目类别:
    面上项目

相似海外基金

Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 54.27万
  • 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    $ 54.27万
  • 项目类别:
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
  • 批准号:
    10659397
  • 财政年份:
    2023
  • 资助金额:
    $ 54.27万
  • 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
  • 批准号:
    10662142
  • 财政年份:
    2023
  • 资助金额:
    $ 54.27万
  • 项目类别:
Measuring input-output operations of cortical neurons with large-scale neurotransmitter imaging
通过大规模神经递质成像测量皮质神经元的输入输出操作
  • 批准号:
    10687664
  • 财政年份:
    2023
  • 资助金额:
    $ 54.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了